10.若實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{2x+y≤4}\\{x-y≥1}\\{x-2y≤2}\end{array}\right.$,則目標函數(shù)z=3x+y的最大值為(  )
A.6B.$\frac{17}{3}$C.$\frac{20}{3}$D.-1

分析 先畫出約束條件的可行域,再求出可行域中各角點的坐標,將各點坐標代入目標函數(shù)的解析式,分析后易得目標函數(shù)z=3x+y的最大值.

解答 解:由約束條件$\left\{\begin{array}{l}{2x+y≤4}\\{x-y≥1}\\{x-2y≤2}\end{array}\right.$得如圖所示的三角形區(qū)域,
三個頂點坐標為A(2,0),$\left\{\begin{array}{l}{2x+y-4=0}\\{x-y-1=0}\end{array}\right.$解得B($\frac{5}{3}$,$\frac{2}{3}$),C(0,-1)
將三個代入z=3x+y得z的值分別為6,$\frac{17}{3}$,-1,
直線z=3x+y過點A (2,0)時,z取得最大值為6;
故選:A.

點評 在解決線性規(guī)劃的小題時,我們常用“角點法”,其步驟為:①由約束條件畫出可行域⇒②求出可行域各個角點的坐標⇒③將坐標逐一代入目標函數(shù)⇒④驗證,求出最優(yōu)解.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

20.已知A,B,C是球O的球面上三點,若三棱錐O-ABC體積的最大值為1,則球O的體積為8π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{6}x+2,x>a}\\{{x}^{2}+3x+2,x≤a}\end{array}\right.$,函數(shù)g(x)=f(x)-ax,恰有三個不同的零點,則a的取值范圍是( 。
A.($\frac{1}{6}$,3-2$\sqrt{2}$)B.($\frac{1}{6}$,$\frac{3}{2}$)C.(-∞,3-2$\sqrt{2}$)D.(3-2$\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.設全集為R,集合A={x|x2+3x≤0},則∁RA=(  )
A.{x|x<-3或x>0}B.{x|x≤3或x≥0}C.{x|-3<x<0}D.{x|-3≤x≤0}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.某企業(yè)擬用10萬元投資甲、乙兩種商品.已知各投入x萬元,甲、乙兩種商品分別可獲得y1,y2萬元的利潤,利潤曲線${P_1}:{y_1}=a{x^n}$,P2:y2=bx+c,如圖所示.
(1)求函數(shù)y1,y2的解析式;
(2)應怎樣分配投資資金,才能使投資獲得的利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知平面內三個單位向量$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$,<$\overrightarrow{OA}$,$\overrightarrow{OB}$>=60°,若$\overrightarrow{OC}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$,則m+n的最大值是$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.命題甲:對任意x∈(a,b),有f′(x)>0;命題乙:f(x)在(a,b)內是單調遞增的,則甲是乙的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知拋物線C:y2=8x的焦點為F,準線為l,P是l上一點,直線PF與曲線相交于M,N兩點,若$\overrightarrow{PF}$=3$\overrightarrow{MF}$,則|MN|=( 。
A.$\frac{21}{2}$B.$\frac{32}{3}$C.10D.11

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知a=0.30.3,b=1.20.3,c=log1.20.3,則a,b,c的大小關系為( 。
A.c<a<bB.c<b<aC.a<b<cD.a<c<b

查看答案和解析>>

同步練習冊答案