A. | 6 | B. | $\frac{17}{3}$ | C. | $\frac{20}{3}$ | D. | -1 |
分析 先畫出約束條件的可行域,再求出可行域中各角點的坐標,將各點坐標代入目標函數(shù)的解析式,分析后易得目標函數(shù)z=3x+y的最大值.
解答 解:由約束條件$\left\{\begin{array}{l}{2x+y≤4}\\{x-y≥1}\\{x-2y≤2}\end{array}\right.$得如圖所示的三角形區(qū)域,
三個頂點坐標為A(2,0),$\left\{\begin{array}{l}{2x+y-4=0}\\{x-y-1=0}\end{array}\right.$解得B($\frac{5}{3}$,$\frac{2}{3}$),C(0,-1)
將三個代入z=3x+y得z的值分別為6,$\frac{17}{3}$,-1,
直線z=3x+y過點A (2,0)時,z取得最大值為6;
故選:A.
點評 在解決線性規(guī)劃的小題時,我們常用“角點法”,其步驟為:①由約束條件畫出可行域⇒②求出可行域各個角點的坐標⇒③將坐標逐一代入目標函數(shù)⇒④驗證,求出最優(yōu)解.
科目:高中數(shù)學 來源: 題型:選擇題
A. | ($\frac{1}{6}$,3-2$\sqrt{2}$) | B. | ($\frac{1}{6}$,$\frac{3}{2}$) | C. | (-∞,3-2$\sqrt{2}$) | D. | (3-2$\sqrt{2}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|x<-3或x>0} | B. | {x|x≤3或x≥0} | C. | {x|-3<x<0} | D. | {x|-3≤x≤0} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{21}{2}$ | B. | $\frac{32}{3}$ | C. | 10 | D. | 11 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | c<a<b | B. | c<b<a | C. | a<b<c | D. | a<c<b |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com