【題目】對于定義域為D的函數(shù)y=f(x),如果存在區(qū)間[m,n]D,同時滿足:
①f(x)在[m,n]內(nèi)是單調(diào)函數(shù);
②當(dāng)定義域是[m,n]時,f(x)的值域也是[m,n].
則稱[m,n]是該函數(shù)的“和諧區(qū)間”.
(1)證明:[0,1]是函數(shù)y=f(x)=x2的一個“和諧區(qū)間”.
(2)求證:函數(shù) 不存在“和諧區(qū)間”.
(3)已知:函數(shù) (a∈R,a≠0)有“和諧區(qū)間”[m,n],當(dāng)a變化時,求出n﹣m的最大值.
【答案】
(1)證明:∵y=x2在區(qū)間[0,1]上單調(diào)遞增.
又f(0)=0,f(1)=1,
∴值域為[0,1],
∴區(qū)間[0,1]是y=f(x)=x2的一個“和諧區(qū)間”
(2)證明:設(shè)[m,n]是已知函數(shù)定義域的子集.
∵x≠0,[m,n](﹣∞,0)或[m,n](0,+∞),
故函數(shù) 在[m,n]上單調(diào)遞增.
若[m,n]是已知函數(shù)的“和諧區(qū)間”,則
故m、n是方程 的同號的相異實數(shù)根.
∵x2﹣3x+5=0無實數(shù)根,
∴函數(shù) 不存在“和諧區(qū)間”
(3)解:設(shè)[m,n]是已知函數(shù)定義域的子集.
∵x≠0,[m,n](﹣∞,0)或[m,n](0,+∞),
故函數(shù) 在[m,n]上單調(diào)遞增.
若[m,n]是已知函數(shù)的“和諧區(qū)間”,則
故m、n是方程 ,即a2x2﹣(a2+a)x+1=0的同號的相異實數(shù)根.
∵ ,
∴m,n同號,只須△=a2(a+3)(a﹣1)>0,即a>1或a<﹣3時,
已知函數(shù)有“和諧區(qū)間”[m,n],
∵ ,
∴當(dāng)a=3時,n﹣m取最大值
【解析】(1)根據(jù)二次函數(shù)的性質(zhì),我們可以得出y=f(x)=x2在區(qū)間[0,1]上單調(diào)遞增,且值域也為[0,1]滿足“和諧區(qū)間”的定義,即可得到結(jié)論.(2)該問題是一個確定性問題,從正面證明有一定的難度,故可采用反證法來進行證明,即先假設(shè)區(qū)間[m,n]為函數(shù)的“和諧區(qū)間”,然后根據(jù)函數(shù)的性質(zhì)得到矛盾,進而得到假設(shè)不成立,原命題成立.(3)設(shè)[m,n]是已知函數(shù)定義域的子集,我們可以用a表示出n﹣m的取值,轉(zhuǎn)化為二次函數(shù)的最值問題后,根據(jù)二次函數(shù)的性質(zhì),可以得到答案.
【考點精析】本題主要考查了函數(shù)單調(diào)性的性質(zhì)的相關(guān)知識點,需要掌握函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中常數(shù).
(1)當(dāng)時,求函數(shù)的單調(diào)遞增區(qū)間;
(2)設(shè)定義在上的函數(shù)在點處的切線方程為,若在內(nèi)恒成立,則稱為函數(shù)的“類對稱點”,當(dāng)時,試問是否存在“類對稱點”,若存在,請至少求出一個“類對稱點”的橫坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)p:實數(shù)x滿足,其中a≠0,q:實數(shù)x滿足.
(I)若a=1,且p∧q為真,求實數(shù)x的取值范圍.
(II)若p是q的必要不充分條件,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是直角梯形, , , , , 是等邊三角形,且側(cè)面底面, 分別是, 的中點.
(Ⅰ)求證: 平面;
(Ⅱ)求平面與平面所成的二面角(銳角)的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)的最小值為1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在區(qū)間[2a,a+1]上不單調(diào),求實數(shù)a的取值范圍;
(3)在區(qū)間[﹣1,1]上,y=f(x)的圖象恒在y=2x+2m+1的圖象上方,試確定實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}為等差數(shù)列,前n項和為Sn(n∈N*),{bn}是首項為2的等比數(shù)列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4.
(Ⅰ)求{an}和{bn}的通項公式;
(Ⅱ)求數(shù)列{a2nbn}的前n項和(n∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的奇函數(shù)f(x),當(dāng)x∈(﹣∞,0)時,f(x)=﹣x2+mx﹣1.
(1)當(dāng)x∈(0,+∞)時,求f(x)的解析式;
(2)若方程f(x)=0有五個不相等的實數(shù)解,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】孝感星河天街購物廣場某營銷部門隨機抽查了100名市民在2017年國慶長假期間購物廣場的消費金額,所得數(shù)據(jù)如表,已知消費金額不超過3千元與超過3千元的人數(shù)比恰為3:2.
(1)試確定, , , 的值,并補全頻率分布直方圖(如圖);
(2)用分層抽樣的方法從消費金額在和的兩個群體中抽取5人進行問卷調(diào)查,則各小組應(yīng)抽取幾人?若從這5人中隨機選取2人,則此2人來自同一群體的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓: 的離心率與雙曲線的離心率互為倒數(shù),且橢圓的長軸長為4.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線交橢圓于, 兩點, ()為橢圓上一點,求面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com