已知f(x)=3x,并且f(a+2)=18,g(x)=3ax-4x的定義域?yàn)閰^(qū)間[-1,1].
(1)求函數(shù)g(x)的解析式;
(2)求函數(shù)g(x)的值域.
考點(diǎn):函數(shù)的值域,函數(shù)解析式的求解及常用方法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)利用指數(shù)函數(shù)的性質(zhì)求出a的值,然后求g(x)的解析式.
(2)根據(jù)指數(shù)函數(shù)的性質(zhì),利用換元法轉(zhuǎn)化為一元二次函數(shù)求值域.
解答: 解:(1)∵f(a+2)=18,∴3a+2=9•3a=18,即3a=2,∴a=log32,
∴g(x)=3ax-4x=(3ax-4x=(3log32)x-4x=2x-4x
(2)∵g(x)=2x-4x=-(2x-
1
2
2+
1
4
,
∵-1≤x≤1,
1
2
2x≤2
,
∴設(shè)t=2x,則
1
2
≤t≤2
,
則函數(shù)g(x)等價(jià)為m(t)=-(t-
1
2
2+
1
4

∴m(t)單調(diào)遞減,
-2≤m(t)≤
1
4
,
即函數(shù)g(x)的值域?yàn)閇-2,
1
4
].
點(diǎn)評(píng):本題主要考查指數(shù)函數(shù)和二次函數(shù)的性質(zhì),利用換元法將函數(shù)轉(zhuǎn)化為關(guān)于t的一元二次函數(shù)是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖是一幾何體的三視圖,則此幾何體的體積是(  )
A、4B、8C、12D、4π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=loga(ax-
x
)(a>0,a≠1
為常數(shù)).
(Ⅰ)求函數(shù)f(x)的定義域;
(Ⅱ)若a=2,x∈[1,9],求函數(shù)f(x)的值域;
(Ⅲ)若函數(shù)y=af(x)的圖象恒在直線y=-2x+1的上方,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x,y滿足約束條件
x≤0
y≤0
x+y+1≥0
,則目標(biāo)函數(shù)z=x+2y的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=
log0.5(x-1)
的定義域?yàn)锳,函數(shù)f(x)=2x2+2x的值域?yàn)锽
(1)求A∪B;
(2)求(∁RA)∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖是一個(gè)空間幾何體的三視圖,如果主視圖和左視圖都是邊長(zhǎng)為2的正三角形,俯視圖為正方形,那么該幾何體的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解下列不等式
(1)不等式2x2-x-1>0
(2)不等式
x+1
x
≤3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知偶函數(shù)f(x)對(duì)任意x∈R均滿足f(2+x)=f(2-x),且當(dāng)-2≤x≤0時(shí),f(x)=log3(1-x),則f(2014)的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=x2+ax+2.
(Ⅰ)若函數(shù)f(x)在區(qū)間[3,4]上單調(diào)且有最大值為2,求實(shí)數(shù)a值;
(Ⅱ)若函數(shù)f(x)的圖象與連接兩點(diǎn)M(0,1),N(2,3)的線段(包括M,N兩點(diǎn))有兩個(gè)相異的交點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案