【題目】如圖,在多面體ABCDEF中,四邊形ABCD為平行四邊形,平面ADE⊥平面CDEF,∠ADE=60°,DE∥CF,CD⊥DE,AD=2,DE=DC=3,CF=4,點G是棱CF上的動點.
(Ⅰ)當CG=3時,求證EG∥平面ABF;
(Ⅱ)求直線BE與平面ABCD所成角的正弦值;
(Ⅲ)若二面角G﹣AE﹣D所成角的余弦值為,求線段CG的長.
【答案】(Ⅰ)證明見詳解;(Ⅱ);(Ⅲ)
【解析】
(1)通過證明直線AB∥EG,從而由線線平行推證線面平行;
(2)過A作DE垂線AO,以為坐標原點,建立空間直角坐標系,求出平面的法向量以及直線的方向向量,從而求解線面角的正弦值;
(3)由(2)中所建的直角坐標系,根據(jù)二面角G﹣AE﹣D所成角的余弦值,求得G點的坐標,即可求得CG的長度.
(Ⅰ)證明:由已知得CG∥DE且CG=DE,
故四邊形CDEG為平行四邊形,
∴CD∥EG,
∵四邊形ABCD為平行四邊形,
∴CD∥AB,∴AB∥EG,
又EG平面ABF,AB平面ABF,
∴EG∥平面ABF.
(Ⅱ)過點A作AO⊥DE交DE于點O,過點O作OK∥CD交CF于點K
由(1)知平面ADE⊥平面CDEF,平面ADE∩平面CDEF=DE,AO平面ADE,
∴AO⊥平面CDEF,∵CD⊥DE,∴OK⊥DE,以O為原點建立如圖的空間直角坐標系,
則D(0,﹣1,0),E(0,2,0),C(3,﹣1,0),
F(3,3,0),,D(0,﹣1,0),
∴
設平面ABCD的法向量為,
即,令z=﹣1,則,
,
∴直線BE與平面ABCD所成角的正弦值為,
(Ⅲ)由題意得,G(3,4λ﹣1,0).
∴,
設平面AEG的法向量為,即,
令y=3,則,x=3﹣4λ,
∴,
容易得平面AED的法向量為,
故可得,
解得,
∴,∴|CG|=λ|CF|=4λ,
∵|CG|≤4,
∴.
科目:高中數(shù)學 來源: 題型:
【題目】經(jīng)過多年的努力,炎陵黃桃在國內(nèi)乃至國際上逐漸打開了銷路,成為炎陵部分農(nóng)民脫貧致富的好產(chǎn)品.為了更好地銷售,現(xiàn)從某村的黃桃樹上隨機摘下了100個黃桃進行測重,其質(zhì)量分布在區(qū)間內(nèi)(單位:克),統(tǒng)計質(zhì)量的數(shù)據(jù)作出其頻率分布直方圖如圖所示:
(1)按分層抽樣的方法從質(zhì)量落在,的黃桃中隨機抽取5個,再從這5個黃桃中隨機抽2個,求這2個黃桃質(zhì)量至少有一個不小于400克的概率;
(2)以各組數(shù)據(jù)的中間數(shù)值代表這組數(shù)據(jù)的平均水平,以頻率代表概率,已知該村的黃桃樹上大約還有100000個黃桃待出售,某電商提出兩種收購方案:
A.所有黃桃均以20元/千克收購;
B.低于350克的黃桃以5元/個收購,高于或等于350克的以9元/個收購.
請你通過計算為該村選擇收益最好的方案.
(參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】
如圖,長方體ABCD–A1B1C1D1的底面ABCD是正方形,點E在棱AA1上,BE⊥EC1.
(1)證明:BE⊥平面EB1C1;
(2)若AE=A1E,求二面角B–EC–C1的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: (a>b>0),四點P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三點在橢圓C上.
(1)求C的方程;
(2)設直線l不經(jīng)過P2點且與C相交于A,B兩點.若直線P2A與直線P2B的斜率的和為–1,證明:l過定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù).
(1)若,,討論函數(shù)的零點個數(shù)情況;
(2)若,對于,存在,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的一個焦點與拋物線的焦點重合,且橢圓的離心率為.
(1)求橢圓的標準方程;
(2)直線交橢圓于、兩點,線段的中點為,直線是線段的垂直平分線,求證:直線過定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的方程為,其焦點為,為過焦點的拋物線的弦,過分別作拋物線的切線,,設,相交于點.
(1)求的值;
(2)如果圓的方程為,且點在圓內(nèi)部,設直線與相交于,兩點,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com