【題目】已知,不等式的解集是.
(1)求的解析式;
(2)不等式組的正整數(shù)解只有一個(gè),求實(shí)數(shù)k取值范圍;
(3)若對(duì)于任意,不等式恒成立,求t的取值范圍.
【答案】(1);(2);(3).
【解析】
(1)根據(jù)不等式的解集是,得到是一元二次方程的兩個(gè)實(shí)數(shù)根,利用韋達(dá)定理得到參數(shù)所滿(mǎn)足的條件,最后求得結(jié)果;
(2)首先求得不等式組的解,根據(jù)只有一個(gè)正整數(shù)解,得到參數(shù)所滿(mǎn)足的條件,求得結(jié)果;
(3)根據(jù)不等式恒成立,分類(lèi)討論,結(jié)合函數(shù)圖象的特征求得結(jié)果.
(1)因?yàn)椴坏仁?/span>的解集是,
所以是一元二次方程的兩個(gè)實(shí)數(shù)根,
可得,解得
所以;
(2)不等式組即為,,
解得,
因?yàn)椴坏仁浇M的正整數(shù)解只有一個(gè),可得該正整數(shù)解就是6,
可得,解得,
所以的取值范圍是;
(3),即,即,
當(dāng)時(shí)顯然成立,
當(dāng)時(shí),有,即,
解得,所以,
當(dāng)時(shí),函數(shù)在上單調(diào)遞增,
所以只要其最大值滿(mǎn)足條件即可,
所以有,解得,即,
綜上,的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)生將語(yǔ)文、數(shù)學(xué)、英語(yǔ)、物理、化學(xué)、生物科的作業(yè)安排在周六、周日完成,要求每天至少完成兩科,且數(shù)學(xué)、物理作業(yè)不在同一天完成,則完成作業(yè)的不同順序種數(shù)為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次考試中,某班級(jí)50名學(xué)生的成績(jī)統(tǒng)計(jì)如下表,規(guī)定75分以下為一般,大于等于75分小于85分為良好,85分及以上為優(yōu)秀.
分?jǐn)?shù) | 69 | 73 | 74 | 75 | 77 | 78 | 79 | 80 | 82 | 83 | 85 | 87 | 89 | 93 | 95 | 合計(jì) |
人數(shù) | 2 | 4 | 4 | 2 | 3 | 4 | 6 | 3 | 3 | 4 | 4 | 5 | 2 | 3 | 1 | 50 |
經(jīng)計(jì)算,樣本的平均值,標(biāo)準(zhǔn)差.為評(píng)判該份試卷質(zhì)量的好壞,從其中任取一人,記其成績(jī)?yōu)?/span>X,并根據(jù)以下不等式進(jìn)行評(píng)判:
①;
②;
③.
評(píng)判規(guī)則:若同時(shí)滿(mǎn)足上述三個(gè)不等式,則被評(píng)為優(yōu)秀試卷;若僅滿(mǎn)足其中兩個(gè)不等式,則被評(píng)為合格試卷;其他情況,則被評(píng)為不合格試卷.
(1)試判斷該份試卷被評(píng)為哪種等級(jí);
(2)按分層抽樣的方式從3個(gè)層次的學(xué)生中抽出10名學(xué)生,再?gòu)某槌龅?/span>10名學(xué)生中隨機(jī)抽出4人進(jìn)行學(xué)習(xí)方法交流,用隨機(jī)變量表示4人中成績(jī)優(yōu)秀的人數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠加工產(chǎn)品的工人的年齡構(gòu)成和相應(yīng)的平均正品率如下表:
年齡(單位:歲) | ||||
人數(shù)比例 | 0.3 | 0.4 | 0.2 | 0.1 |
平均正品率 | 85% | 95% | 80% | 70% |
(1)畫(huà)出該工廠加工產(chǎn)品的工人的年齡頻率分布直方圖;
(2)估計(jì)該工廠工人加工產(chǎn)品的平均正品率;
(3)該工廠想確定一個(gè)轉(zhuǎn)崗年齡歲,到達(dá)這個(gè)年齡的工人不再加工產(chǎn)品,轉(zhuǎn)到其他崗位,為了使剩余工人加工產(chǎn)品的平均正品率不低于90%,若年齡在同一區(qū)間內(nèi)的工人加工產(chǎn)品的正品率都取相應(yīng)區(qū)間的平均正品率,則估計(jì)最高可定為多少歲?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若S是公差不為0的等差數(shù)列的前項(xiàng)和,且成等比數(shù)列。
(1)求等比數(shù)列的公比;
(2)若,求的通項(xiàng)公式;
(3)設(shè), 是數(shù)列的前項(xiàng)和,求使得對(duì)所有都成立的最小正整數(shù)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列結(jié)論:在回歸分析中
(1)可用相關(guān)指數(shù)的值判斷模型的擬合效果,越大,模型的擬合效果越好;
(2)可用殘差平方和判斷模型的擬合效果,殘差平方和越大,模型的擬合效果越好;
(3)可用相關(guān)系數(shù)的值判斷模型的擬合效果,越大,模型的擬合效果越好;
(4)可用殘差圖判斷模型的擬合效果,殘差點(diǎn)比較均勻地落在水平的帶狀區(qū)域中,說(shuō)明這樣的模型比較合適.帶狀區(qū)域的寬度越窄,說(shuō)明模型的擬合精度越高.
以上結(jié)論中,不正確的是( )
A.(1)(3)B.(2)(3)C.(1)(4)D.(3)(4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】實(shí)驗(yàn)中學(xué)從高二級(jí)部中選拔一個(gè)班級(jí)代表學(xué)校參加“學(xué)習(xí)強(qiáng)國(guó)知識(shí)大賽”,經(jīng)過(guò)層層選拔,甲、乙兩個(gè)班級(jí)進(jìn)入最后決賽,規(guī)定回答1個(gè)相關(guān)問(wèn)題做最后的評(píng)判選擇由哪個(gè)班級(jí)代表學(xué)校參加大賽.每個(gè)班級(jí)6名選手,現(xiàn)從每個(gè)班級(jí)6名選手中隨機(jī)抽取3人回答這個(gè)問(wèn)題已知這6人中,甲班級(jí)有4人可以正確回答這道題目,而乙班級(jí)6人中能正確回答這道題目的概率每人均為,甲、乙兩班級(jí)每個(gè)人對(duì)問(wèn)題的回答都是相互獨(dú)立,互不影響的.
(1)求甲、乙兩個(gè)班級(jí)抽取的6人都能正確回答的概率;
(2)分別求甲、乙兩個(gè)班級(jí)能正確回答題目人數(shù)的期望和方差、,并由此分析由哪個(gè)班級(jí)代表學(xué)校參加大賽更好?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),為的導(dǎo)數(shù),函數(shù)在處取得最小值.
(1)求證:;
(2)若時(shí),恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】鳳鳴山中學(xué)的高中女生體重 (單位:kg)與身高(單位:cm)具有線(xiàn)性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(),用最小二乘法近似得到回歸直線(xiàn)方程為,則下列結(jié)論中不正確的是( )
A.與具有正線(xiàn)性相關(guān)關(guān)系
B.回歸直線(xiàn)過(guò)樣本的中心點(diǎn)
C.若該中學(xué)某高中女生身高增加1cm,則其體重約增加0.85kg
D.若該中學(xué)某高中女生身高為160cm,則可斷定其體重必為50.29kg.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com