設(shè)函數(shù)f(x)=|x-1|+|x-a|,x∈R.
(Ⅰ)當(dāng)a=4時(shí),求不等式f(x)≥6的解集;
(Ⅱ)若f(x)≥2a對(duì)x∈R恒成立,求a的取值范圍.
考點(diǎn):絕對(duì)值不等式的解法,函數(shù)恒成立問(wèn)題
專(zhuān)題:計(jì)算題,分類(lèi)討論,不等式的解法及應(yīng)用
分析:(Ⅰ)不等式即|x-1|+|x-4|≥6,通過(guò)去絕對(duì)值符號(hào),列出不等式組,分別求出每個(gè)不等式組的解集,再取并集即得所求.
(Ⅱ)利用f(x)=|x-1|+|x-a|≥|a-1|,由題意可得|a-1|≥2a,由此此解得a的范圍.
解答: 解:(Ⅰ)當(dāng)a=4時(shí),不等式f(x)≥6,即|x-1|+|x-4|≥6,等價(jià)于
x<1
-2x+5≥6
,或
1≤x≤4
3≥6
,或 
x>4
2x-5≥6

解得:x≤-
1
2
或 x≥
11
2

故不等式f(x)≥6的解集為 {x|x≤-
1
2
,或 x≥
11
2
}. …(5分)
(Ⅱ)∵f(x)=|x-1|+|x-a|≥|(x-1)-(x-a)|=|a-1|.(當(dāng)x=1時(shí)等號(hào)成立)
所以:f(x)min=|a-1|.…(8分)
由題意得:|a-1|≥2a,⇒
a>0
(a-1)2≥4a2
或a≤0,
⇒0<a≤
1
3
,或a≤0,
解得a的取值范圍:a≤
1
3
 …(10分)
點(diǎn)評(píng):本題主要考查絕對(duì)值不等式的解法,函數(shù)的恒成立問(wèn)題,考查分類(lèi)討論思想,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=3x+3-x,若f(a)=3,則f(2a)等于( 。
A、3B、5C、7D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,底面為正方形,PC與底面ABCD垂直,圖為該四棱錐的主視圖和左視圖,它們是腰長(zhǎng)為6cm的全等的等腰直角三角形.
(Ⅰ)根據(jù)圖所給的主視圖、左視圖,畫(huà)出相應(yīng)的俯視圖,并求出該俯視圖的面積;
(Ⅱ)求PA的長(zhǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x)=
2x
a
-
a
2x
(a>0)
有一個(gè)零點(diǎn)為0.
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)判斷f(x)的奇偶性;
(Ⅲ)判斷f(x)在(0,+∞)上的單調(diào)性,并用定義法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集∪={1,2,3,4,5,6,7,8},A={1,2,4},B={2,4,5},P={4,7,8}
求:①(∁uB)∪A      ②(A∩B)∩(∁uP)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=x2-2|x|-1的單調(diào)性并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:“直線y=x+
2
與橢圓x2+
y2
a
=1(a>0且a≠1)
有公共點(diǎn)”,命題q:“有且只有一個(gè)實(shí)數(shù)x滿足不等式x2+2ax+2a≤0”. 若命題“p或q”是假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四邊形ABCD中,
AD
BC
(λ>0),|
AB
|=|
AD
|=2,|
CB
-
CD
|=2
3
,且△BCD是以BC為斜邊的直角三角形.
(Ⅰ)求λ的值;
(Ⅱ)求
BC
CD
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線x+
3
y-2=0
與圓x2+y2=4相交于A,B兩點(diǎn),則|AB|=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案