【題目】已知集合A={x|y= },B={x|﹣1≤2x﹣1≤0},則(RA)∩B=(
A.(4,+∞)
B.
C.
D.(1,4]

【答案】B
【解析】解:集合A={x|y= }={x|x﹣4≥0}={x|x≥4},
B={x|﹣1≤2x﹣1≤0}={x|0≤x≤ },
RA={x|x<4}
∴(RA)∩B={x|0≤x≤ }=[0, ].
故選:B.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解交、并、補(bǔ)集的混合運(yùn)算的相關(guān)知識(shí),掌握求集合的并、交、補(bǔ)是集合間的基本運(yùn)算,運(yùn)算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問(wèn)題時(shí),常常從這兩個(gè)字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語(yǔ)言表達(dá),增強(qiáng)數(shù)形結(jié)合的思想方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合A={x|x2+ax﹣12=0},B={x|x2+bx+c=0},且A≠B,A∪B={﹣3,4},A∩B={﹣3},求實(shí)數(shù)b,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知空間三點(diǎn)A(0,2,3),B(﹣2,1,6),C(1,﹣1,5);求:
(1)求以向量 為一組鄰邊的平行四邊形的面積S;
(2)若向量a分別與向量 垂直,且|a|= ,求向量a的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)為定義R在的偶函數(shù),當(dāng)0≤x≤2時(shí),y= ;當(dāng)x>2時(shí),y=f(x)的圖象是頂點(diǎn)在p(3,4),且過(guò)點(diǎn)A(2,3)的拋物線的一部分.
(1)求函數(shù)f(x)的解析式;
(2)在下面的直角坐標(biāo)系中直接畫(huà)出函數(shù)f(x)的圖象,寫出函數(shù)f(x)的單調(diào)區(qū)間(無(wú)需證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列中, , , .?dāng)?shù)列的前n項(xiàng)和為,滿足,

(1)求數(shù)列的通項(xiàng)公式;

(2)數(shù)列能否為等差數(shù)列?若能,求其通項(xiàng)公式;若不能,試說(shuō)明理由;

(3)若數(shù)列是各項(xiàng)均為正整數(shù)的遞增數(shù)列,設(shè),則當(dāng), , , 均成等差數(shù)列時(shí),求正整數(shù), , 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】統(tǒng)計(jì)全國(guó)高三學(xué)生的視力情況,得到如圖所示的頻率分布直方圖,由于不慎將部分?jǐn)?shù)據(jù)丟失,但知道前4組的頻率成等比數(shù)列,后6組的頻率成等差數(shù)列.

(Ⅰ)求出視力在[4.7,4.8]的頻率;

(Ⅱ)現(xiàn)從全國(guó)的高三學(xué)生中隨機(jī)地抽取4人,用表示視力在[4.3,4.7]的學(xué)生人數(shù),寫出的分布列,并求出的期望與方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)為對(duì)數(shù)函數(shù),并且它的圖象經(jīng)過(guò)點(diǎn)(2 , ),g(x)=[f(x)]2﹣2bf(x)+3,其中b∈R.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)y=g(x)在區(qū)間[ ,16]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=log2(4x+1)﹣x,g(x)=log2a+log2(2x )(a>0,x>1).
(1)證明函數(shù)f(x)為偶函數(shù);
(2)若函數(shù)f(x)﹣g(x)只有一個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= ,函數(shù)g(x)=b﹣f(2﹣x),其中b∈R,若函數(shù)y=f(x)﹣g(x)恰有4個(gè)零點(diǎn),則b的取值范圍是(
A.( ,+∞)
B.(﹣∞,
C.(0,
D.( ,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案