【題目】已知函數(shù)f(x)=log2(4x+1)﹣x,g(x)=log2a+log2(2x )(a>0,x>1).
(1)證明函數(shù)f(x)為偶函數(shù);
(2)若函數(shù)f(x)﹣g(x)只有一個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

【答案】
(1)證明:f(x)的定義域是R,

f(﹣x)=log2(4x+1)+x

=log2 +x

=log2(4x+1)﹣log222x+x

=log2(4x+1)﹣2x+x

=f(x),

故f(x)在R是偶函數(shù)


(2)解:由題意:函數(shù)f(x)﹣g(x)只有一個(gè)零點(diǎn),即f(x)=g(x)只有一個(gè)零點(diǎn),

可得:log2(4x+1)﹣x=log2a+log2(2x )(a>0)

整理得:

即:

令2x=t

∵x>1,

∴t>2

轉(zhuǎn)化為f(t)= (t>2)與x軸的交點(diǎn)問(wèn)題.

當(dāng)a﹣1=0,即a=1時(shí),f(t)=

∵t>2,∴f(t)恒小于0,與x軸沒(méi)有交點(diǎn).

當(dāng)a﹣1>0,即a>1時(shí),f(t)與x軸有一個(gè)交點(diǎn),需那么f(2)<0.

解得: ,

所以:

當(dāng)a﹣1<0,即0<a<1時(shí),f(t)與x軸有一個(gè)交點(diǎn),需那么f(2)>0,此時(shí)無(wú)解.

綜上所得:函數(shù)f(x)﹣g(x)只有一個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍是(1,


【解析】(1)求解定義域,利用定義進(jìn)行判斷即可.(2)函數(shù)f(x)﹣g(x)只有一個(gè)零點(diǎn),即f(x)=g(x)只有一個(gè)零點(diǎn),化簡(jiǎn)計(jì)算,轉(zhuǎn)化成二次方程問(wèn)題求解.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解函數(shù)的奇偶性(偶函數(shù)的圖象關(guān)于y軸對(duì)稱(chēng);奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng)).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= 是奇函數(shù).
(1)求實(shí)數(shù)a的值;
(2)用定義證明函數(shù)f(x)在R上的單調(diào)性;
(3)若對(duì)任意的x∈R,不等式f(x2﹣x)+f(2x2﹣k)>0恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|y= },B={x|﹣1≤2x﹣1≤0},則(RA)∩B=(
A.(4,+∞)
B.
C.
D.(1,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)是橢圓的左、右頂點(diǎn), 為左焦點(diǎn),點(diǎn)是橢圓上異于的任意一點(diǎn),直線(xiàn)與過(guò)點(diǎn)且垂直于軸的直線(xiàn)交于點(diǎn),直線(xiàn)于點(diǎn).

(1)求證:直線(xiàn)與直線(xiàn)的斜率之積為定值;

(2)若直線(xiàn)過(guò)焦點(diǎn), ,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= 是定義在(﹣1,1)上的奇函數(shù),且f(1)=1.
(1)求函數(shù)f(x)的解析式;
(2)判斷并證明f(x)在(﹣1,1)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在R上的奇函數(shù)f(x),當(dāng)x>0時(shí),f(x)=﹣x2+2x
(1)求函數(shù)f(x)在R上的解析式;
(2)若函數(shù)f(x)在區(qū)間[﹣1,a﹣2]上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是自然對(duì)數(shù)的底數(shù), , , , .

(1)設(shè),求的極值;

(2)設(shè),求證:函數(shù)沒(méi)有零點(diǎn);

(3)若,設(shè),求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】石家莊市為鼓勵(lì)居民節(jié)約用電,采用分段計(jì)費(fèi)的方法計(jì)算電費(fèi),每月用電不超過(guò)100度時(shí),按每度0.52元計(jì)算,每月用電量超過(guò)100度時(shí),其中的100度仍按原標(biāo)準(zhǔn)收費(fèi),超過(guò)的部分每度按0.6元計(jì)算.
(1)設(shè)月用電x度時(shí),應(yīng)繳電費(fèi)y元,寫(xiě)出y關(guān)于x的函數(shù)關(guān)系式;
(2)小明家第一季度繳納電費(fèi)情況如表:

月份

一月

二月

三月

合計(jì)

繳費(fèi)金額

82元

64元

46.8元

192.8元

問(wèn)小明家第一季度共用電多少度?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線(xiàn)C: 的離心率是 ,其一條準(zhǔn)線(xiàn)方程為x=
(Ⅰ)求雙曲線(xiàn)C的方程;
(Ⅱ)設(shè)雙曲線(xiàn)C的左右焦點(diǎn)分別為A,B,點(diǎn)D為該雙曲線(xiàn)右支上一點(diǎn),直線(xiàn)AD與其左支交于點(diǎn)E,若 ,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案