分析 (1)利用a2=-14,a5=-5,建立方程組,求出首項與公差,即可求數(shù)列{an}的通項an;
(2)路配方法求{an}前n項和Sn的最小值.
解答 解:(1)設{an}的公差為d,由已知條件得$\left\{\begin{array}{l}a_1^{\;}+d=-14\\{a_1}+4d=-5\end{array}\right.$,…(2分)
解得 a1=-17,d=3.…(4分)
∴an=-17+(n-1)3=3n-20.…(6分)
(2)${S_n}=n{a_1}+\frac{{n({n-1})}}{2}d=\frac{1}{2}({3{n^2}-37n})$…(8分)
當$n=\frac{37}{6}$時Sn有最小值 又n∈N+,
∴n=6時,f(x)=x2-2x+2lnx取到最小值-57. …(12分)
點評 本題考查等差數(shù)列的通項與前n項和,考查方程與函數(shù)思想,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $32\sqrt{6}$ | B. | $8\sqrt{6}$ | C. | $32\sqrt{3}$ | D. | $8\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0<m<1 | B. | m≥1 | C. | m≤-1或m=0 | D. | m>1或m=0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{2}+\sqrt{6}$ | B. | $\sqrt{2}+\sqrt{3}$ | C. | $\sqrt{3}+\sqrt{5}$ | D. | $\sqrt{5}$+$\sqrt{6}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com