【題目】設(shè)橢圓C的方程為,O為坐標(biāo)原點(diǎn),A為橢團(tuán)的上頂點(diǎn),為其右焦點(diǎn),D是線段的中點(diǎn),且.

1)求橢圓C的方程;

2)過(guò)坐標(biāo)原點(diǎn)且斜率為正數(shù)的直線交橢圓CPQ兩點(diǎn),分別作軸,軸,垂足分別為E,F,連接,并延長(zhǎng)交橢圓C于點(diǎn)M,N兩點(diǎn).

(。┡袛的形狀;

(ⅱ)求四邊形面積的最大值.

【答案】(1)(2)(。為直角三角形(ⅱ)

【解析】

1)根據(jù)題意得到,在求出,得到橢圓標(biāo)準(zhǔn)方程;(2)(。┫仍O(shè)直線的方程,分別與橢圓方程聯(lián)立,得到點(diǎn)的坐標(biāo),從而表示出直線的斜率,得到,從而做出判斷;(ⅱ)先得到四邊形面積是面積的2倍,利用弦長(zhǎng)公式得到,,從而表示出的面積,再利用基本不等式得到其最大值,從而得到四邊形面積的最大值.

解:(1)設(shè)橢圓的半焦距為c.

由題意可得,D的中點(diǎn),

,

,∴

∴橢圓的方程為.

2)(1)設(shè)直線的方程為,且點(diǎn)P在第一象限,

聯(lián)立消去y,

顯然

,.

又∵軸,∴,

,

∴直線的方程為,

聯(lián)立消去y,

,

.

,

,

,

,

為直角三角形.

(ⅱ)根據(jù)圖形的對(duì)稱(chēng)性可知,四邊形面積是面積的2倍,

由(。┲為直角三角形,且,

.

,

.

,∵,∴,

,而上單調(diào)遞增,

所以,所以

即當(dāng)時(shí),最大,此時(shí)的面積也達(dá)到最大,

由對(duì)稱(chēng)性可知,

故當(dāng)時(shí),最大,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知

(1)設(shè)的極值點(diǎn),求實(shí)數(shù)的值,并求的單調(diào)區(qū)間:

(2)時(shí),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《中國(guó)詩(shī)詞大會(huì)》亮點(diǎn)頗多,十場(chǎng)比賽每場(chǎng)都有一首特別設(shè)計(jì)的開(kāi)場(chǎng)詩(shī)詞,在聲光舞美的配合下,百人團(tuán)齊聲朗誦,別有韻味.因?yàn)榍八膱?chǎng)播出后反響很好,所以節(jié)目組決定《將進(jìn)酒》、《山居秋暝》、《望岳》、《送杜少府之任蜀州》和另外確定的兩首詩(shī)詞排在后六場(chǎng),并要求《將進(jìn)酒》與《望岳》相鄰,且《將進(jìn)酒》排在《望岳》的前面,《山居秋暝》與《送杜少府之任蜀州》不相鄰,且均不排在最后,則后六場(chǎng)開(kāi)場(chǎng)詩(shī)詞的排法有( )

A. 144種 B. 48種 C. 36種 D. 72種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】曲線的極坐標(biāo)方程為(常數(shù)),曲線的參數(shù)方程為為參數(shù)).

1)求曲線的直角坐標(biāo)方程和的普通方程;

2)若曲線有兩個(gè)不同的公共點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《算法統(tǒng)宗》全稱(chēng)《新編直指算法統(tǒng)宗》,是屮國(guó)古代數(shù)學(xué)名著,程大位著.書(shū)中有如下問(wèn)題:“今有五人均銀四十兩,甲得十兩四錢(qián),戊得五兩六錢(qián).問(wèn):次第均之,乙丙丁各該若干?”意思是:有5人分40兩銀子,甲分104錢(qián),戊分56錢(qián),且相鄰兩項(xiàng)差相等,則乙丙丁各分幾兩幾錢(qián)?(注:1兩等于10錢(qián))(

A.乙分8兩,丙分8兩,丁分8B.乙分82錢(qián),丙分8兩,丁分78錢(qián)

C.乙分92錢(qián),丙分8兩,丁分68錢(qián)D.乙分9兩,丙分8兩,丁分7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】初中數(shù)學(xué)靠練,高中數(shù)學(xué)靠悟”.總結(jié)反思自己已經(jīng)成為數(shù)學(xué)學(xué)習(xí)中不可或缺的一部分,為了了解總結(jié)反思對(duì)學(xué)生數(shù)學(xué)成績(jī)的影響,某校隨機(jī)抽取200名學(xué)生,抽到不善于總結(jié)反思的學(xué)生概率是0.6.

1)完成列聯(lián)表(應(yīng)適當(dāng)寫(xiě)出計(jì)算過(guò)程);

2)試運(yùn)用獨(dú)立性檢驗(yàn)的思想方法分析是否有的把握認(rèn)為學(xué)生的學(xué)習(xí)成績(jī)與善于總結(jié)反思有關(guān).

統(tǒng)計(jì)數(shù)據(jù)如下表所示:

不善于總結(jié)反思

善于總結(jié)反思

合計(jì)

學(xué)習(xí)成績(jī)優(yōu)秀

40

學(xué)習(xí)成績(jī)一般

20

合計(jì)

200

參考公式:其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在棱長(zhǎng)為1的正方體中,分別為棱的中點(diǎn).為面對(duì)角線上任一點(diǎn),則下列說(shuō)法正確的是(

A.平面內(nèi)存在直線與平行

B.平面截正方體所得截面面積為

C.直線所成角可能為60°

D.直線所成角可能為30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線是由兩個(gè)定點(diǎn)和點(diǎn)的距離之積等于的所有點(diǎn)組成的,對(duì)于曲線,有下列四個(gè)結(jié)論:①曲線是軸對(duì)稱(chēng)圖形;②曲線上所有的點(diǎn)都在單位圓內(nèi);③曲線是中心對(duì)稱(chēng)圖形;④曲線上所有點(diǎn)的縱坐標(biāo).其中,所有正確結(jié)論的序號(hào)是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線過(guò)點(diǎn),且焦點(diǎn)為F,直線l與拋物線相交于A,B兩點(diǎn).

⑴求拋物線C的方程,并求其準(zhǔn)線方程;

為坐標(biāo)原點(diǎn).,證明直線l必過(guò)一定點(diǎn),并求出該定點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案