若x,y滿足約束條件
x≥0
y≥0
x-y≥-1
3x+4y≤12
,則x+y的最大值為
 
考點:簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對應(yīng)的平面區(qū)域,設(shè)z=x+y,利用z的幾何意義,利用數(shù)形結(jié)合即可得到結(jié)論.
解答: 解:作出不等式組對應(yīng)的平面區(qū)域如圖:

由z=x+y得y=-x+z,
平移直線y=-x+z由圖象可知當(dāng)直線y=-x+z經(jīng)過點A時,
直線y=-x+z的截距最大,此時z最大,
對于直線3x+4y=12,當(dāng)y=0時,x=4,即A(4,0),
此時z=4+0=4,
故答案為:4
點評:本題主要考查線性規(guī)劃的應(yīng)用,利用z的幾何意義,結(jié)合數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

線性回歸方程y=bx+a中,b的意義是(  )
A、x每增加一個單位,y就平均增加或減少|(zhì)b|個單位
B、x每增加一個單位,y就增加a+b個單位
C、x每增加一個單位,y就增加a個單位
D、x每增加一個單位,y就減少a+b個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(cosx)=cos2007x.求:
(1)f(
1
2
)的值;
(2)f(sinx)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實數(shù)x、y滿足(x+y-1)(x-y+1)≥0且x∈[-1,1],則x+y的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知y=f(x)是定義在R上的奇函數(shù),且f(
π
2
+x)=f(
π
2
-x)
,對于函數(shù)y=f(x),給出以下幾個結(jié)論:
①y=f(x)是周期函數(shù); 
②x=π 是y=f(x)圖象的一條對稱軸;
③(-π,0)是y=f(x)圖象的一個對稱中心; 
④當(dāng)x=
π
2
時,y=f(x)一定取得最大值.
其中正確結(jié)論的序號是
 
(把你認為正確結(jié)論的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中錯誤的是
 
.(填寫錯誤命題的序號)
(1)若一直線垂直于一平面,則此直線必垂直于這一平面內(nèi)所有直線.
(2)若一平面經(jīng)過另一平面的一條垂線,則這兩個平面互相垂直.
(3)若一條直線平行于一個平面內(nèi)的一條直線,則此直線平行于這個平面.
(4)若兩個平面互相平行,則分別在這兩個平面內(nèi)的兩條直線必互相平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某高校進行自主招生面試時的程序如下:共設(shè)3道題,每道題答對給10分,答錯倒扣5分(每道題都必須回答,但相互不影響).設(shè)某學(xué)生對每道題答對的概率都為
3
4
,則該學(xué)生在面試時得分的期望為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體三視圖如下圖所示,則該幾何體的體積是(  )
A、1+
π
12
B、1+
π
6
C、1+
π
3
D、1+π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知O是坐標(biāo)原點,點A(-1,1),若點M(x,y)為平面區(qū)域
2x+y-2≥0
x-2y+4≥0
3x-y-3≤0
上的一個動點,則|AM|的最小值是( 。
A、
3
5
5
B、
2
C、
5
D、
13

查看答案和解析>>

同步練習(xí)冊答案