【題目】把方程表示的曲線作為函數(shù)的圖象,則下列結(jié)論正確的有( )
A.的圖象不經(jīng)過(guò)第一象限
B.在上單調(diào)遞增
C.的圖象上的點(diǎn)到坐標(biāo)原點(diǎn)的距離的最小值為
D.函數(shù)不存在零點(diǎn)
【答案】ACD
【解析】
首先討論去掉絕對(duì)值,并畫(huà)出函數(shù)的圖象,直接判斷AB,然后數(shù)形結(jié)合,并結(jié)合橢圓和雙曲線的性質(zhì)判斷CD選項(xiàng).
當(dāng),方程是不表示任何曲線,故A正確;
當(dāng) ,方程是,即 ,
當(dāng) ,方程是 ,即,
當(dāng) ,方程是,即 ,
如圖畫(huà)出圖象
由圖判斷函數(shù)在上單調(diào)遞減,故B不正確;
由圖判斷圖象上的點(diǎn)到原點(diǎn)距離的最小值點(diǎn)應(yīng)在的圖象上,
即滿足 ,設(shè)圖象上的點(diǎn)
當(dāng)時(shí)取得最小值3,故C正確;
當(dāng) ,即 ,
函數(shù)的零點(diǎn),就是函數(shù) 和的交點(diǎn),
而是曲線,和的漸近線,所以沒(méi)有交點(diǎn),由圖象可知和,沒(méi)有交點(diǎn),
所以函數(shù)不存在零點(diǎn),故D正確.
故選:ACD
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)家大力提倡科技創(chuàng)新,某工廠為提升甲產(chǎn)品的市場(chǎng)競(jìng)爭(zhēng)力,對(duì)生產(chǎn)技術(shù)進(jìn)行創(chuàng)新改造,使甲產(chǎn)品的生產(chǎn)節(jié)能降耗.以下表格提供了節(jié)能降耗后甲產(chǎn)品的生產(chǎn)產(chǎn)量(噸)與相應(yīng)的生產(chǎn)能耗(噸)的幾組對(duì)照數(shù)據(jù).
(噸) | ||||
(噸) |
(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(,)
(2)已知該廠技術(shù)改造前生產(chǎn)噸甲產(chǎn)品的生產(chǎn)能耗為噸,試根據(jù)(1)求出的線性回歸方程,預(yù)測(cè)節(jié)能降耗后生產(chǎn)噸甲產(chǎn)品的生產(chǎn)能耗比技術(shù)改造前降低多少?lài)崳?/span>
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】正數(shù)數(shù)列、滿足:≥,且對(duì)一切k≥2,k,是與的等差中項(xiàng),是與的等比中項(xiàng).
(1)若,,求,的值;
(2)求證:是等差數(shù)列的充要條件是為常數(shù)數(shù)列;
(3)記,當(dāng)n≥2(n)時(shí),指出與的大小關(guān)系并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)m,n是兩條不同直線,α,β,γ是三個(gè)不同平面,給出下列四個(gè)命題:
①若m⊥α,n⊥α,則m∥n;②若α∥β,β∥γ,m⊥α,則m⊥γ;
③若m∥α,n∥α,則m∥n;④若m⊥α,m∥β,則α⊥β.
其中正確命題的個(gè)數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:()的一個(gè)焦點(diǎn)與拋物線:的焦點(diǎn)重合,且離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)焦點(diǎn)的直線與拋物線交于,兩點(diǎn),與橢圓交于,兩點(diǎn),滿足,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),若曲線與曲線存在唯一的公切線,求實(shí)數(shù)的值;
(3)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(其中為自然對(duì)數(shù)的底數(shù)).
(1)求的單調(diào)性;
(2)若,對(duì)于任意,是否存在與有關(guān)的正常數(shù),使得成立?如果存在,求出一個(gè)符合條件的;否則說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列是公比為正數(shù)的等比數(shù)列,,;數(shù)列前項(xiàng)和為,滿足,.
(1)求,及數(shù)列,的通項(xiàng)公式;
(2)求.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com