已知函數(shù)f(x)=ln(x+a)-x2-x在x=0處取得極值.
(Ⅰ)求實數(shù)a的值;
(Ⅱ)若關(guān)于x的方程f(x)=-
5
2
x+b在區(qū)間[0,2]上恰有兩個不同的實數(shù)根,求實數(shù)b的取值范圍;
(Ⅲ)證明:對任意的正整數(shù)n,不等式2+
3
4
+
4
9
+…+
n+1
n2
>ln(n+1)都成立.
考點:利用導(dǎo)數(shù)研究函數(shù)的極值,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:壓軸題,導(dǎo)數(shù)的綜合應(yīng)用
分析:(Ⅰ)函數(shù)f(x)=ln(x+a)-x2-x,對其進(jìn)行求導(dǎo),在x=0處取得極值,可得f′(0)=0,求得a值;
(Ⅱ)關(guān)于x的方程f(x)=-
5
2
x+b在區(qū)間[0,2]上恰有兩個不同的實數(shù)根,將問題轉(zhuǎn)化為φ(x)=0,在區(qū)間[0,2]上恰有兩個不同的實數(shù)根,對φ(x)對進(jìn)行求導(dǎo),從而求出b的范圍;
(Ⅲ)f(x)=ln(x+1)-x2-x的定義域為{x|x>-1},利用導(dǎo)數(shù)研究其單調(diào)性,可以推出ln(x+1)-x2-x≤0,令x=
1
n
,可以得到ln(
1
n
+1)<
1
n
+
1
n2
,利用此不等式進(jìn)行放縮證明;
解答: 解:(Ⅰ)函數(shù)f(x)=ln(x+a)-x2-x
f′(x)=
1
x+a
-2x-1              
當(dāng)x=0時,f(x)取得極值,
∴f′(0)=0                                    
1
0+a
-2×0-1=0
,
解得a=1,經(jīng)檢驗a=1符合題意,
則實數(shù)a的值為1;
(Ⅱ)由a=1知f(x)=ln(x+1)-x2-x
由f(x)=-
5
2
x+b,得ln(x+1)-x2+
3
2
x-b=0
令φ(x)=ln(x+1)-x2+
3
2
x-b,
則f(x)=-
5
2
x+b在區(qū)間[0,2]上恰有兩個不同的實數(shù)根等價于φ(x)=0在區(qū)間[0,2]上恰有兩個不同的實數(shù)根.
φ′(x)=
1
x+1
-2x+
3
2
=
-(4x+5)(x-1)
2(x+1)
,
當(dāng)x∈[0,1]時,φ′(x)>0,于是φ(x)在[0,1)上單調(diào)遞增;
當(dāng)x∈(1,2]時,φ′(x)<0,于是φ(x)在(1,2]上單調(diào)遞減,
依題意有φ(0)=-b≤0,
φ(1)=ln(1+1)-1+
3
2
-b>0,
φ(2)=ln(1+2)-4+3-b≤0
解得,ln3-1≤b<ln2+
1
2
,
故實數(shù)b的取值范圍為:[ln3-1,ln2+
1
2
);       
(Ⅲ)f(x)=ln(x+1)-x2-x的定義域為{x|x>-1},由(1)知f(x)=
-x(2x+3)
x+1

令f′(x)=0得,x=0或x=-
3
2
(舍去),
∴當(dāng)-1<x<0時,f′(x)>0,f(x)單調(diào)遞增;
當(dāng)x>0時,f′(x)<0,f(x)單調(diào)遞減.
∴f(0)為f(x)在(-1,+∞)上的最大值.
∴f(x)≤f(0),故ln(x+1)-x2-x≤0(當(dāng)且僅當(dāng)x=0時,等號成立)
對任意正整數(shù)n,取x=
1
n
>0得,ln(
1
n
+1)<
1
n
+
1
n2

∴l(xiāng)n(
n+1
n
)<
n+1
n2
,
故2+
3
4
+
4
9
+…+
n+1
n2
>ln2+ln
3
2
+ln
4
3
+…+ln
n+1
n
=ln(n+1).
點評:本題考查利用導(dǎo)數(shù)研究函數(shù)的極值及單調(diào)性,解題過程中用到了分類討論的思想,分類討論的思想也是高考的一個重要思想,要注意體會其在解題中的運(yùn)用,第三問難度比較大,利用了前兩問的結(jié)論進(jìn)行證明,此題是一道中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某空間幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A、
8
3
B、8
C、
32
3
D、16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x,x<0
f(x-1)+1,x≥0
,則f(2014)=( 。
A、2014
B、
4029
2
C、2015
D、
4031
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-2sin2
ωx
2
+sin(ωx+
π
6
)-cos(ωx+
π
3
)(ω>0,x∈R),且函數(shù)f(x)的最小正周期為π.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)在△ABC中,角A,B,C所對的邊分別為a,b,c,若f(B)=1,
BA
BC
=
2
3
3
,且a+c=4,試求b2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=msinx+3cosx,若函數(shù)y=f(x)的圖象與直線y=n(n為常數(shù))相鄰兩個交點的橫坐標(biāo)為x1=
π
12
,x2=
12

(Ⅰ)求f(x)的解析式;
(Ⅱ)在△ABC中,a,b,c分別是角A,B,C的對邊,A為銳角,且f(A)=3
3
,現(xiàn)給出三個條件:①a=2,②B=
π
4
,③c=
3
b
.試從中選出兩個可以確定△ABC的條件,寫出你的選擇,并以此為依據(jù)求△ABC的面積.(只需寫出一個選定方案即可,選多種方案者,以第一種方案記分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個袋中裝有6個形狀大小完全相同的小球,球的編號分別為1,2,3,4,5,6.
(Ⅰ)若從袋中每次隨機(jī)抽取1個球,有放回的抽取3次,求恰有兩次編號為3的倍數(shù)的概率;
(Ⅱ)若一次從袋中隨機(jī)抽取3個球,記球的最大編號為X,求隨機(jī)變量X的分布列和X的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求證:過已知平面外一點且平行于該平面的直線都在過已知點平行于該平面的平面內(nèi).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)為奇函數(shù),且對定義域內(nèi)的任意x都有f(1+x)=-f(1-x).當(dāng)x∈(2,3)時,f(x)=log2(x-1),給出以下4個結(jié)論:
①函數(shù)y=f(x)的圖象關(guān)于點(k,0)(k∈Z)成中心對稱;
②函數(shù)y=|f(x)|是以2為周期的周期函數(shù);
③當(dāng)x∈(-1,0)時,f(x)=-log2(1-x);
④函數(shù)y=f(|x|)在(k,k+1)( k∈Z)上單調(diào)遞增.
其中所有正確結(jié)論的序號為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線m在平面α內(nèi),直線n在平面β內(nèi),下列命題正確的是(  )
A、m⊥n⇒α⊥β
B、α∥β⇒m∥β
C、m⊥n⇒m⊥β
D、m∥n⇒α∥β

查看答案和解析>>

同步練習(xí)冊答案