直線m在平面α內(nèi),直線n在平面β內(nèi),下列命題正確的是( 。
A、m⊥n⇒α⊥β
B、α∥β⇒m∥β
C、m⊥n⇒m⊥β
D、m∥n⇒α∥β
考點(diǎn):空間中直線與平面之間的位置關(guān)系
專(zhuān)題:空間位置關(guān)系與距離
分析:由m?α,n?β,結(jié)合面面垂直的判定方法和面面平行的判定方法,逐一判斷四個(gè)答案的正誤,可得結(jié)論.
解答: 解:∵m?α,n?β,若m⊥n,則α與β可能平行也可能相交,故A錯(cuò)誤;
若α∥β,根據(jù)面面平行的定義,可知兩個(gè)平面沒(méi)有公共點(diǎn),由m?α可知,m與β沒(méi)有公共點(diǎn),即m∥β,故B正確;
若m⊥n,則m與β可能平行,也可能相交,故C錯(cuò)誤;
若m∥n,則α與β可能平行也可能相交,故D錯(cuò)誤;
故選:B
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是空間直線與平面之間的位置關(guān)系,熟練掌握空間線面關(guān)系,面面關(guān)系,線線關(guān)系的定義,幾何特征及性質(zhì)和判定方法是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ln(x+a)-x2-x在x=0處取得極值.
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)若關(guān)于x的方程f(x)=-
5
2
x+b在區(qū)間[0,2]上恰有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)b的取值范圍;
(Ⅲ)證明:對(duì)任意的正整數(shù)n,不等式2+
3
4
+
4
9
+…+
n+1
n2
>ln(n+1)都成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若sin2θ+2cosθ=-2,則cosθ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x,y滿足不等式組
0≤x≤2
x+y-2≥0
x-y+2≥0
,則目標(biāo)函數(shù)z=3x-4y的最小值m與最大值M的積為(  )
A、-60B、-48
C、-80D、36

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知m,n是兩條不同的直線,α,β是兩個(gè)不同的平面,則下列命題正確的是( 。
A、若m∥α,n∥α,則m∥n
B、若m∥n,m⊥α,則n⊥α
C、若m∥α,m∥β,則α∥β
D、若m∥α,α⊥β,則m⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果loga8>logb8>0,那么a、b間的關(guān)系是( 。
A、0<a<b<1
B、1<a<b
C、0<b<a<1
D、1<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)m、n是兩條不同的直線,α、β是兩個(gè)不同的平面.下列四個(gè)命題中,正確的是(  )
A、α∥β,m?α,n?β,則m∥n
B、α⊥β,m⊥β,則m∥α或m?α
C、α⊥β,m?α,n?β,則m⊥n
D、α∥β,m⊥β,n⊥α,則m∥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)正項(xiàng)等比數(shù)列{an}的前n項(xiàng)和為Sn,公比為q,若Sk-2=3,Sk=15,Sk+2=63,則q=(  )
A、-2B、2C、-4D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

四棱柱ABCD-A1B1C1D1中,AA1⊥底面ABCD,AB∥CD,AB⊥AD,AD=CD=1,AA1=AB=2,E為AA1的中點(diǎn).
(1)求證:B1C1⊥CE;
(2)求二面角B1-CE-C1大小的余弦值;
(3)設(shè)點(diǎn)M在線段C1E上,且直線AM與平面ADD1A1所成角的正弦值為
2
6
,求線段AM的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案