已知函數(shù)f(x)=ax3-
3
2
(a+2)x2+6x+b在x=2處取得極值.
(Ⅰ)求a的值及f(x)的單調(diào)區(qū)間;
(Ⅱ)若x∈[1,4]時,不等式f(x)>b2恒成立,求b的取值范圍.
考點:利用導(dǎo)數(shù)研究函數(shù)的極值,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用,導(dǎo)數(shù)的綜合應(yīng)用
分析:(Ⅰ)求出導(dǎo)數(shù),由題意得,f'(2)=0,求出a的值,再令導(dǎo)數(shù)大于0,得增區(qū)間,令導(dǎo)數(shù)小于0,得減區(qū)間;
(Ⅱ)x∈[1,4]時,不等式f(x)>b2恒成立即為f(x)的最小值大于b2,在[1,4]上恒成立,只要求出最小值即可.
解答: 解:(Ⅰ)∵函數(shù)f(x)=ax3-
3
2
(a+2)x2+6x+b,
∴f'(x)=3ax2-3(a+2)x+6,
∴f'(2)=12a-6a-12+6=0,
∴a=1.
由f'(x)=3x2-9x+6>0得x>2或x<1,
由f'(x)=3x2-9x+6<0得1<x<2,
∴函數(shù)f(x)的單調(diào)增區(qū)間為(-∞,1)、(2,+∞),單調(diào)減區(qū)間為(1,2).
(Ⅱ)f(x)=x3-
9
2
x2+6x+b
,
當(dāng)x∈[1,4]時,不等式f(x)>b2恒成立,即有f(x)的最小值大于b2,
∵f(x)min=f(2)=2+b,
∴2+b>b2,-1<b<2,
∴b的取值范圍(-1,2).
點評:本題考查導(dǎo)數(shù)的綜合應(yīng)用:求單調(diào)區(qū)間、求極值、求最值,考查不等式的恒成立問題轉(zhuǎn)化為求函數(shù)的最值問題,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x的不等式|x-1|+a-2≤0(a∈R).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

南海中學(xué)校園內(nèi)建有一塊矩形草坪ABCD,AB=50米,BC=25
3
米,為了便于師生平時休閑散步,總務(wù)科將在這塊草坪內(nèi)鋪設(shè)三條小路OE、EF和OF,考慮到校園整體規(guī)劃,要求O是AB的中點,點E在邊BC上,點F在邊AD上,且∠EOF=90°,如圖所示.
(1)設(shè)∠BOE=α,試將△OEF的面積S表示成α的函數(shù)關(guān)系式,并求出此函數(shù)的定義域;
(2)在△OEF區(qū)域計劃種植海南省花三角梅,請你幫總務(wù)科計算△OEF面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax3+bx2+cx+d(a,b,c,d∈R)的圖象關(guān)于原點對稱,且x=1時,f(x)取得極小值-
2
3

(1)求a,b,c,d的值;
(2)若x1,x2∈[-1,1],求證:|f(x1)-f(x2)|≤
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,設(shè)P是圓x2+y2=25上的動點,點D是P在x軸上的投影,M為PD上一點,且|MD|=
4
5
|PD|,當(dāng)P在圓上運動時,求點M的軌跡C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex+ax-1
(1)求f(x)的增區(qū)間;
(2)若f(x)在(0,+∞)上恒正,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
6
3
,且橢圓C上的點到原點的距離的最大值為
3

(1)求橢圓C的方程;
(2)若動點P滿足
OP
=
OM
+3
ON
,其中M、N是橢圓上不同兩點,直線OM、ON的斜率之積為-
1
3
,求動點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三個內(nèi)角A,B,C滿足2B=A+C且所對的邊分別為a,b,c.
(1)求B;
(2)若a=
3
sinA+cosA,求當(dāng)a取最大值時A,b,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l的方程為y-a=(a-1)(x+2),若直線l在y軸上的截距為6,則a=
 

查看答案和解析>>

同步練習(xí)冊答案