精英家教網 > 高中數學 > 題目詳情
在△ABC中,∠A,∠B,∠C所對的邊分別是a,b,c,已知a2+b2-c2=ab,則∠C=   
【答案】分析:利用余弦定理表示出cosC,把已知的等式代入求出cosC的值,由C為三角形的內角,利用特殊角的三角函數值即可求出C的度數.
解答:解:∵a2+b2-c2=ab
∴根據余弦定理得:
cosC===,
又C為三角形的內角,
則∠C=45°.
故答案為:45°
點評:此題考查了余弦定理,以及特殊角的三角函數值,利用了整體代入的思想,余弦定理很好的建立了三角形的邊角關系,熟練掌握余弦定理是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•臨沂一模)已知函數f(x)=cos
x
2
-
3
sin
x
2

(I)若x∈[-2π,2π],求函數f(x)的單調減區(qū)間;
(Ⅱ)在△ABC中,a,b,c分別為角A,B,C的對邊,若f(2A-
2
3
π)=
4
3
,sinB=
5
cosC,a=
2
,求△ABC的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•煙臺二模)在△ABC中,a、b、c為角A、B、C所對的三邊.已知b2+c2-a2=bc
(1)求角A的值;
(2)若a=
3
,設內角B為x,周長為y,求y=f(x)的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•保定一模)在△ABC中,a、b、c分別為∠A、∠B、∠C的對邊,三邊a、b、c成等差數列,且B=
π
4
,則(cosA一cosC)2的值為
2
2

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中角A、B、C的對邊分別為a、b、c設向量
m
=(a,cosB),
n
=(b,cosA)且
m
n
,
m
n

(Ⅰ)若sinA+sinB=
6
2
,求A;
(Ⅱ)若△ABC的外接圓半徑為1,且abx=a+b試確定x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,∠A,∠B,∠C所對的邊分別為a,b,c,已知a=2,b=
7
,∠B=
π
3
,則△ABC的面積為( 。

查看答案和解析>>

同步練習冊答案