【題目】已知三棱錐中,與均為等腰直角三角形,且,,為上一點,且平面.
(1)求證:;
(2)過作一平面分別交, , 于,,,若四邊形為平行四邊形,求多面體的表面積.
【答案】(1)證明見解析.(2)
【解析】
(1)由線面垂直的判定定理,證得平面,再利用性質定理,即可證得,
(2)由線面垂直的判定定理和性質定理,得到,在中,求得,進而得到,即,再利用線面平行的性質定理得到,進而得到四邊形為矩形,同理求得,結合面積公式,即可求解.
(1)由,所以,
由平面,平面,可得,
又由,且平面,平面,所以平面,
又因為平面,所以.
(2)在等腰直角中,,所以,
又因為,可得平面,所以.
等腰中,由,可得,
又中,,,所以,
而,可得,故,
因為四邊形為平行四邊形,所以,可得平面,
又平面,且平面平面,所以,
由,可得,且有,
由平面,可得,
進而得到,所以四邊形為矩形,
同理可得,且,
可得,,
,.
所以所求表面積為.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓E:,過右焦點F的直線l與橢圓E交于A,B兩點(A,B兩點不在x軸上),橢圓E在A,B兩點處的切線交于P,點P在定直線上.
(1)記點,求過點與橢圓E相切的直線方程;
(2)以為直徑的圓過點F,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,直線的參數(shù)方程(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程是.
(1)求曲線的直角坐標方程和直線的普通方程;
(2)若直線與曲線交于、兩點,點的坐標為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn,且Sn=n(n+2)(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)設bn,求數(shù)列{bn}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在某外國語學校舉行的(高中生數(shù)學建模大賽)中,參與大賽的女生與男生人數(shù)之比為,且成績分布在,分數(shù)在以上(含)的同學獲獎.按女生、男生用分層抽樣的方法抽取人的成績作為樣本,得到成績的頻率分布直方圖如圖所示.
(Ⅰ)求的值,并計算所抽取樣本的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(Ⅱ)填寫下面的列聯(lián)表,并判斷在犯錯誤的概率不超過的前提下能否認為“獲獎與女生、男生有關”.
女生 | 男生 | 總計 | |
獲獎 | |||
不獲獎 | |||
總計 | |||
附表及公式:
其中,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(,).
(1)當時,若函數(shù)在上有兩個零點,求的取值范圍;
(2)當時,是否存在,使得不等式恒成立?若存在,求出的取值集合;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,拋物線的焦點為,過點作直線與拋物線交于、兩點,當直線與軸垂直時長為.
(1)求拋物線的方程;
(2)若與的面積相等,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,A、B分別為橢圓的上、下頂點,若動直線l過點,且與橢圓相交于C、D兩個不同點(直線l與y軸不重合,且C、D兩點在y軸右側,C在D的上方),直線AD與BC相交于點Q.
(1)設的兩焦點為、,求的值;
(2)若,且,求點Q的橫坐標;
(3)是否存在這樣的點P,使得點Q的縱坐標恒為?若存在,求出點P的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在極坐標系中,極點為,一條封閉的曲線由四段曲線組成:,,,.
(1)求該封閉曲線所圍成的圖形面積;
(2)若直線:與曲線恰有3個公共點,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com