【題目】設(shè)f(x)=|lgx|,且0<a<b<c時,有f(a)>f(c)>f(b),則(
A.(a﹣1)(c﹣1)>0
B.ac>1
C.ac=1
D.ac<1

【答案】D
【解析】解:∵f(x)=|lgx|,
∴作出f(x)的圖象如圖:
∵0<a<b<c時,有f(a)>f(c)>f(b),
∴0<a<1,c>1,
即f(a)=|lga|=﹣lga,f(c)=|lgc|=lgc,
∵f(a)>f(c),
∴﹣lga>lgc,
則lga+lgc=lgac<0,
則0<ac<1,
故選:D

【考點精析】通過靈活運用復合函數(shù)單調(diào)性的判斷方法,掌握復合函數(shù)f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減”即可以解答此題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】解答題
(1)求不等式a2x1>ax+2(a>0,且a≠1)中x的取值范圍(用集合表示).
(2)已知f(x)是定義在R上的奇函數(shù),且當x>0時,f(x)= +1,求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】放射性元素由于不斷有原子放射出微粒子而變成其他元素,其含量不斷減少,這種現(xiàn)象稱為衰變.假設(shè)在放射性同位素銫137的衰變過程中,其含量M(單位:太貝克)與時間t(單位:年)滿足函數(shù)關(guān)系:M(t)=M0 ,其中M0為t=0時銫137的含量.已知t=30時,銫137含量的變化率是﹣10In2(太貝克/年),則M(60)=(
A.5太貝克
B.75In2太貝克
C.150In2太貝克
D.150太貝克

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= ax2﹣(2a+1)x+2lnx(a≥0)
(1)當a=0時,求f(x)的單調(diào)區(qū)間;
(2)求y=f(x)在區(qū)間(0,2]上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列結(jié)論中不正確的(
A.logab?logbc?logca=1
B.函數(shù)f(x)=ex滿足f(a+b)=f(a)?f(b)
C.函數(shù)f(x)=ex滿足f(a?b)=f(a)?f(b)
D.若xlog34=1,則4x+4x=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)= 是定義在(﹣∞,+∞)上的奇函數(shù),且f( )=
(1)求實數(shù)a、b,并確定函數(shù)f(x)的解析式;
(2)判斷f(x)在(﹣1,1)上的單調(diào)性,并用定義證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)f(x)=|lgx|,且0<a<b<c時,有f(a)>f(c)>f(b),則(
A.(a﹣1)(c﹣1)>0
B.ac>1
C.ac=1
D.ac<1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)為奇函數(shù),當x≥0時,f(x)= .g(x)=
(1)求當x<0時,函數(shù)f(x)的解析式,并在給定直角坐標系內(nèi)畫出f(x)在區(qū)間[﹣5,5]上的圖象;(不用列表描點)

(2)根據(jù)已知條件直接寫出g(x)的解析式,并說明g(x)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在上的奇函數(shù),設(shè)其導函數(shù)為,當時,恒有,令,則滿足的實數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案