【題目】為推動(dòng)更多人閱讀,聯(lián)合國(guó)教科文組織確定每年的月日為“世界讀書(shū)日”.設(shè)立目的是希望居住在世界各地的人,無(wú)論你是年老還是年輕,無(wú)論你是貧窮還是富裕,都能享受閱讀的樂(lè)趣,都能尊重和感謝為人類文明做出過(guò)巨大貢獻(xiàn)的思想大師們,都能保護(hù)知識(shí)產(chǎn)權(quán).為了解不同年齡段居民的主要閱讀方式,某校興趣小組在全市隨機(jī)調(diào)查了名居民,經(jīng)統(tǒng)計(jì)這人中通過(guò)電子閱讀與紙質(zhì)閱讀的人數(shù)之比為,將這人按年齡分組,其中統(tǒng)計(jì)通過(guò)電子閱讀的居民得到的頻率分布直方圖如圖所示.
(1)求的值及通過(guò)電子閱讀的居民的平均年齡;
(2)把年齡在第組的居民稱為青少年組,年齡在第組的居民稱為中老年組,若選出的人中通過(guò)紙質(zhì)閱讀的中老年有人,請(qǐng)完成上面列聯(lián)表,則是否有的把握認(rèn)為閱讀方式與年齡有關(guān)?
【答案】(1),;(2)有.
【解析】
(1)由頻率分布直方圖求出a的值,再計(jì)算數(shù)據(jù)的平均值;
(2)由題意填寫(xiě)列聯(lián)表,計(jì)算觀測(cè)值,對(duì)照臨界值得出結(jié)論.
(1)由頻率分布直方圖可得:10×(0.01+0.015+a+0.03+0.01)=1,
解得a=0.035,
所以通過(guò)電子閱讀的居民的平均年齡為:
20×10×0.01+30×10×0.015+40×10×0.035+50×10×0.03+60×10×0.01=41.5;
(2)由題意人中通過(guò)電子閱讀與紙質(zhì)閱讀的人數(shù)之比為, ∴紙質(zhì)閱讀的人數(shù)為200=50,其中中老年有人,∴紙質(zhì)閱讀的青少年有20人,電子閱讀的總?cè)藬?shù)為150,
青少年人數(shù)為150=90,則中老年有人,
得2×2列聯(lián)表,
電子閱讀 | 紙質(zhì)閱讀 | 合計(jì) | |
青少年(人) | 90 | 20 | 110 |
中老年(人) | 60 | 30 | 90 |
合計(jì)(人) | 150 | 50 | 200 |
計(jì)算,
所以有的把握認(rèn)為認(rèn)為閱讀方式與年齡有關(guān).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)在R上是增函數(shù),則下列說(shuō)法正確的是( )
A.y=-f(x)在R上是減函數(shù)
B.y=在R上是減函數(shù)
C.y=[f(x)]2在R上是增函數(shù)
D.y=af(x)(a為實(shí)數(shù))在R上是增函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)若函數(shù)有兩個(gè)零點(diǎn),求的取值范圍;
(2)證明:當(dāng)時(shí),關(guān)于的不等式在上恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線,斜率為的直線交拋物線于,兩點(diǎn),當(dāng)直線過(guò)點(diǎn)時(shí),以為直徑的圓與直線相切.
(1)求拋物線的方程;
(2)與平行的直線交拋物線于,兩點(diǎn),若平行線,之間的距離為,且的面積是面積的倍,求和的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某人在塔的正東方向沿著南偏西60°的方向前進(jìn)40 m以后,望見(jiàn)塔在東北方向上,若沿途測(cè)得塔的最大仰角為30°,則塔高為________________m.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱柱中,,,,,,,側(cè)棱底面,是的中點(diǎn).
(1)求證:平面;
(2)設(shè)點(diǎn)在線段上,且,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)任意,,,給出下列命題:
①“”是“”的充要條件;
②“是無(wú)理數(shù)”是“是無(wú)理數(shù)”的充要條件;
③“”是“”的必要條件,
④“”是“”的充分條件.
其中真命題的個(gè)數(shù)為().
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)
已知=12sin(x+)cosx-3,x∈[o,].
(1)求的最大值、最小值;
(Ⅱ)CD為△ABC的內(nèi)角平分線,已知AC=max,BC=,CD=2,求∠C.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com