【題目】已知拋物線的焦點為,點是拋物線上任意一點,以為直徑作圓.

1)判斷圓與坐標軸的位置關(guān)系,并證明你的結(jié)論;

2)設(shè)直線與拋物線交于,且,若的面積為,求直線的方程.

【答案】1)相切,證明見解析 2.

【解析】

1)利用圓心到y(tǒng)軸的距離等于半徑,從而判斷圓與軸相切;

2)設(shè)直線的方程為,(),,,根據(jù)可證得直線過定點,再利用三角形的面積求得的值,即可得答案.

1)相切,證明如下:設(shè),圓的半徑為.

,線段的中點為,

所以,以為直徑的圓的圓心軸的距離.

從而,圓與坐標軸相切.(證畢)

2)解:設(shè)直線的方程為,(),,

*),

又由,即,

解得(舍).

∴直線的方程為,故直線恒過定點.

,,

.

所以,.

回代方程(*),檢驗.

所以,直線的方程為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】中,內(nèi)角的對邊分別是,,,且滿足:.

)求角的大小;

(Ⅱ)若,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出如下四個命題:①若p為假命題,則p、q均為假命題;②命題a>b,則的否命題為ab,則;③xR的否定是;④在ABC中,A>B的充要條件;其中正確的命題的個數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線過橢圓的右焦點,且交橢圓于AB兩點,線段AB的中點是

1)求橢圓的方程;

2)過原點的直線l與線段AB相交(不含端點)且交橢圓于CD兩點,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為’(為參數(shù)).以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為.

(1)求的直角坐標方程;

(2)已知直線軸交于點,且與曲線交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點是拋物線的焦點,點為拋物線的對稱軸與其準線的交點,過作拋物線的切線,切點為,若點恰好在以,為焦點的雙曲線上,則雙曲線的離心率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】環(huán)境問題是當今世界共同關(guān)注的問題,我國環(huán)?偩指鶕(jù)空氣污染指數(shù)濃度,制定了空氣質(zhì)量標準:

空氣污染質(zhì)量

空氣質(zhì)量等級

優(yōu)

輕度污染

中度污染

重度污染

嚴重污染

某市政府為了打造美麗城市,節(jié)能減排,從2010年開始考查了連續(xù)六年11月份的空氣污染指數(shù),繪制了頻率分布直方圖,經(jīng)過分析研究,決定從2016111日起在空氣質(zhì)量重度污染和嚴重污染的日子對機動車輛限號出行,即車牌尾號為單號的車輛單號出行,車牌尾號為雙號的車輛雙號出行(尾號為字母的,前13個視為單號,后13個視為雙號).

1)某人計劃11月份開車出行,求因空氣污染被限號出行的概率;

2)該市環(huán)保局為了調(diào)查汽車尾氣排放對空氣質(zhì)量的影響,對限行三年來的11月份共90天的空氣質(zhì)量進行統(tǒng)計,其結(jié)果如表:

空氣質(zhì)量

優(yōu)

輕度污染

中度污染

重度污染

嚴重污染

天數(shù)

16

39

18

10

5

2

根據(jù)限行前180天與限行后90天的數(shù)據(jù),計算并填寫列聯(lián)表,并回答是否有的把握認為空氣質(zhì)量的優(yōu)良與汽車尾氣的排放有關(guān).

空氣質(zhì)量優(yōu)良

空氣質(zhì)量污染

合計

限行前

限行后

合計

參考數(shù)據(jù):

其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】己知函數(shù)處的切線方程為,函數(shù)

1)求函數(shù)的解析式;

2)求函數(shù)的極值;

3)設(shè)表示p,q中的最小值),若上恰有三個零點,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率,且橢圓過點

1)求橢圓的標準方程;

2)設(shè)直線交于兩點,點在橢圓上,是坐標原點,若,判定四邊形的面積是否為定值?若為定值,求出該定值;如果不是,請說明理由.

查看答案和解析>>

同步練習冊答案