如圖的多面體是底面為平行四邊形的直四棱柱ABCD—,經(jīng)平面AEFG

所截后得到的圖形.其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60

(I)求證:BD⊥平面ADG;(Ⅱ)求平面AEFG與平面ABCD所成銳二面角的余弦值.

 

 

 

 

 

 

 

 

【答案】

【解析】

(Ⅰ)證明:在△BAD中,AB=2AD=2,∠BAD=60°,K^S*5U.C#O%

由余弦定理得,BD=∴AD⊥BD     --(2分)

又GD⊥平面ABCD,∴GD⊥BD,GDAD=D,∴BD⊥平面ADG………4分

(Ⅱ)解:以D為坐標(biāo)原點(diǎn),OA為x軸,OB為y軸,OG為z軸建立空間直角坐標(biāo)系D—xyz

則有A(1,0,0),B(0,,0),G(0,0,1),E(0,

     --------------------(6分)

設(shè)平面AEFG法向量為

 -------------(9分)

平面ABCD的一個(gè)法向量   -------------------------(10分)

設(shè)面ABFG與面ABCD所成銳二面角為,

      ----(13分)

 

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(理科)如圖的多面體是底面為平行四邊形的直四棱柱ABCD-A1B1C1D1,經(jīng)平面AEFG所截后得到的圖形.其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.
精英家教網(wǎng)
(Ⅰ)求證:BD⊥平面ADG;
(Ⅱ)求平面AEFG與平面ABCD所成銳二面角的余弦值.

(文科)如圖,AB為圓O的直徑,點(diǎn)E、F在圓O上,AB∥EF,矩形ABCD所在的平面和圓O所在的平面互相垂直,且AB=2,AD=EF=1.
(Ⅰ)求證:AF⊥平面CBF;
(Ⅱ)設(shè)FC的中點(diǎn)為M,求證:OM∥平面DAF.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖的多面體是底面為平行四邊形的直四棱柱ABCD-A1B1C1D1,經(jīng)平面AEFG所截后得到的圖形.其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.
(1)求證:BD⊥平面ADG.
(2)求平面AEFG與平面ABCD所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年黑龍江省雞西市高三第五次月考數(shù)學(xué)理卷 題型:解答題

(本題滿分12分)

如圖的多面體是底面為平行四邊形的直四棱柱ABCD—,經(jīng)平面AEFG所截后得到的圖形.其中∠BAE=∠GAD=45°。AB=2AD=2.∠BAD=60。.

(I)求證:BD⊥平面ADG;

(Ⅱ)求平面AEFG與平面ABCD所成銳二面角的余弦值.                                                               

                                                     

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(理科)如圖的多面體是底面為平行四邊形的直四棱柱ABCD-A1B1C1D1,經(jīng)平面AEFG所截后得到的圖形.其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.

(Ⅰ)求證:BD⊥平面ADG;
(Ⅱ)求平面AEFG與平面ABCD所成銳二面角的余弦值.

(文科)如圖,AB為圓O的直徑,點(diǎn)E、F在圓O上,AB∥EF,矩形ABCD所在的平面和圓O所在的平面互相垂直,且AB=2,AD=EF=1.
(Ⅰ)求證:AF⊥平面CBF;
(Ⅱ)設(shè)FC的中點(diǎn)為M,求證:OM∥平面DAF.

查看答案和解析>>

同步練習(xí)冊(cè)答案