【題目】設(shè)點所在平面內(nèi)一點,下列說法正確的是(

A.,則的形狀為等邊三角形

B.,則點是邊的中點

C.任作一條直線,再分別過頂點的垂線,垂足分別為,若恒成立,則點的垂心

D.則點在邊的延長線上

【答案】AB

【解析】

對于A,由,利用投影通過三線合一判斷;對于B:由,變形為判斷;對于C:將此直線特殊為過點,則,有,則直線經(jīng)過的中點判斷;對于D:由,變形為判斷.

對于A選項,如圖所示.

,則,

因為,

所以的中點,

.同理可證,

為等邊三角形.故A正確.

對于B選項:

即:,則點是邊的中點,故B正確;

對于C選項:因為過內(nèi)一點任作一條直線,可將此直線特殊為過點

,有

如圖:

則有直線經(jīng)過的中點,

同理可得直線經(jīng)過的中點,直線經(jīng)過的中點,

所以點的重心,故C錯誤.

對于D選項:,

則點在邊的延長線上,故D錯誤.

故選:AB

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過橢圓的右焦點F作直線交橢圓于M、N兩點,H為線段MN的中點,且OH的斜率為,設(shè)點

求該橢圓的方程;

若點P是橢圓上的動點,求線段PA的中點G的軌跡方程;

過原點的直線交橢圓于B、C兩點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)有物理、化學(xué)、生物三個學(xué)科競賽各設(shè)冠軍一名,現(xiàn)有人參賽可報任意學(xué)科并且所報學(xué)科數(shù)不限,則最終決出冠軍的結(jié)果共有多少種可能?

(2)有個數(shù),從中取個數(shù)排成一個五位數(shù),要求奇數(shù)位上只能是奇數(shù),則共可排成多少個五位數(shù)?

(3)有個數(shù),從中取個數(shù)排成一個五位數(shù),要求奇數(shù)只在奇數(shù)位上,則共可排成多少個五位數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正方體ABCD-A1B1C1D1的棱長為4,E為棱CC1的中點,點M在正方形BCC1B1內(nèi)運動,且直線AM∥平面A1DE,則動點M的軌跡長度為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC在內(nèi)角A、B、C的對邊分別為a,b,c,已知a=bcosC+csinB.

)求B;

)若b=2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角梯形中,,,如圖1.把沿翻折,使得平面平面,如圖2

(Ⅰ)求證:

(Ⅱ)若點為線段中點,求點到平面的距離;

(Ⅲ)在線段上是否存在點,使得與平面所成角為?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了研究黏蟲孵化的平均溫度(單位: )與孵化天數(shù)之間的關(guān)系,某課外興趣小組通過試驗得到如下6組數(shù)據(jù):

組號

1

2

3

4

5

6

平均溫度

15.3

16.8

17.4

18

19.5

21

孵化天數(shù)

16.7

14.8

13.9

13.5

8.4

6.2

他們分別用兩種模型①,②分別進行擬合,得到相應(yīng)的回歸方程并進行殘差分析,得到如圖所示的殘差圖:

經(jīng)計算得,

(1)根據(jù)殘差圖,比較模型①,②的擬合效果,應(yīng)選擇哪個模型?(給出判斷即可,不必說明理由)

(2)殘差絕對值大于1的數(shù)據(jù)被認為是異常數(shù)據(jù),需要剔除,剔除后應(yīng)用最小二乘法建立關(guān)于的線性回歸方程.(精確到0.1)

,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), ,在處的切線方程為.

(1)求, ;

(2)若,證明: .

【答案】(1), ;(2)見解析

【解析】試題分析:1)求出函數(shù)的導(dǎo)數(shù),得到關(guān)于 的方程組,解出即可;

(2)由(1)可知,

,可得,令, 利用導(dǎo)數(shù)研究其單調(diào)性可得

,

從而證明.

試題解析:((1)由題意,所以,

,所以,

,則,與矛盾,故, .

(2)由(1)可知, ,

,可得,

,

,

當(dāng)時, , 單調(diào)遞減,且;

當(dāng)時, , 單調(diào)遞增;且,

所以上當(dāng)單調(diào)遞減,在上單調(diào)遞增,且,

,

.

【點睛本題考查利用函數(shù)的切線求參數(shù)的方法,以及利用導(dǎo)數(shù)證明不等式的方法,解題時要認真審題,注意導(dǎo)數(shù)性質(zhì)的合理運用.

型】解答
結(jié)束】
22

【題目】在平面直角坐標系中,曲線的參數(shù)方程為, 為參數(shù)),以坐標原點為極點, 軸正半軸為極軸建立極坐標系,直線的極坐標方程為,若直線與曲線相切;

(1)求曲線的極坐標方程;

(2)在曲線上取兩點, 與原點構(gòu)成,且滿足,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若,求曲線在點處的切線方程;

(Ⅱ)若,求函數(shù)的單調(diào)區(qū)間;

(Ⅲ)若,求證: .

查看答案和解析>>

同步練習(xí)冊答案