【題目】為了研究黏蟲孵化的平均溫度(單位: )與孵化天數(shù)之間的關(guān)系,某課外興趣小組通過試驗得到如下6組數(shù)據(jù):
組號 | 1 | 2 | 3 | 4 | 5 | 6 |
平均溫度 | 15.3 | 16.8 | 17.4 | 18 | 19.5 | 21 |
孵化天數(shù) | 16.7 | 14.8 | 13.9 | 13.5 | 8.4 | 6.2 |
他們分別用兩種模型①,②分別進行擬合,得到相應(yīng)的回歸方程并進行殘差分析,得到如圖所示的殘差圖:
經(jīng)計算得,
(1)根據(jù)殘差圖,比較模型①,②的擬合效果,應(yīng)選擇哪個模型?(給出判斷即可,不必說明理由)
(2)殘差絕對值大于1的數(shù)據(jù)被認為是異常數(shù)據(jù),需要剔除,剔除后應(yīng)用最小二乘法建立關(guān)于的線性回歸方程.(精確到0.1)
,.
【答案】(1)應(yīng)該選擇模型①;(2)
【解析】試題分析:(1)第(1)問,由于模型①的殘差帶比較窄,在x軸附近,所以說明擬合效果好,故選模型①. (2)第(2)問,先計算出最小二乘法公式的各個基本量,再代入公式計算,得到關(guān)于的線性回歸方程.
試題解析:
(1)應(yīng)該選擇模型①.
(2)剔除異常數(shù)據(jù),即組號為4的數(shù)據(jù),剩下數(shù)據(jù)的平均數(shù)= (18×6-18)=18;
(12.25×6-13.5)=12.
=1283.01-18×13.5=1040.01;
=1964.34-182=1640.34.
12+1.97×18≈47.5,
所以y關(guān)于x的線性回歸方程為: =-2.0x+47.5.
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)的部分圖象大致是( )
A. B.
C. D.
【答案】D
【解析】當時, ,所以去掉A,B;
因為,所以,因此去掉C,選D.
點睛:有關(guān)函數(shù)圖象識別問題的常見題型及解題思路(1)由解析式確定函數(shù)圖象的判斷技巧:(1)由函數(shù)的定義域,判斷圖象左右的位置,由函數(shù)的值域,判斷圖象的上下位置;②由函數(shù)的單調(diào)性,判斷圖象的變化趨勢;③由函數(shù)的奇偶性,判斷圖象的對稱性;④由函數(shù)的周期性,判斷圖象的循環(huán)往復.(2)由實際情景探究函數(shù)圖象.關(guān)鍵是將問題轉(zhuǎn)化為熟悉的數(shù)學問題求解,要注意實際問題中的定義域問題.
【題型】單選題
【結(jié)束】
8
【題目】《九章算術(shù)》中,將底面是直角三角形的直三棱柱稱之為“塹堵”,已知某“塹堵”的三視圖如圖所示,則該“塹堵”的外接球的表面積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的部分圖象如圖所示,則下列判斷正確的是( 。
A. 函數(shù)的圖象關(guān)于點對稱
B. 函數(shù)的圖象關(guān)于直線對稱
C. 函數(shù)的最小正周期為
D. 當時,函數(shù)的圖象與直線圍成的封閉圖形面積為
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)點是所在平面內(nèi)一點,下列說法正確的是( )
A.若,則的形狀為等邊三角形
B.若,則點是邊的中點
C.過任作一條直線,再分別過頂點作的垂線,垂足分別為,若恒成立,則點是的垂心
D.若則點在邊的延長線上
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,是的中點.
(1)若,求向量與向量的夾角的余弦值;
(2)若是線段上任意一點,且,求的最小值;
(3)若點是內(nèi)一點,且,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在極坐標系中,曲線,曲線,點,以極點為原點,極軸為軸正半軸建立直角坐標系.
(1)求曲線和的直角坐標方程;
(2)過點的直線交于點,交于點,若,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓,直線與圓相交于不同的兩點,點是線段的中點。
(1)求直線的方程;
(2)是否存在與直線平行的直線,使得與與圓相交于不同的兩點,不經(jīng)過點,且的面積最大?若存在,求出的方程及對應(yīng)的的面積S;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對數(shù)函數(shù)g(x)=1ogax(a>0,a≠1)和指數(shù)函數(shù)f(x)=ax(a>0,a≠1)互為反函數(shù).已知函數(shù)f(x)=3x,其反函數(shù)為y=g(x).
(Ⅰ)若函數(shù)g(kx2+2x+1)的定義域為R,求實數(shù)k的取值范圍;
(Ⅱ)若0<x1<x2且|g(x1)|=|g(x2)|,求4x1+x2的最小值;
(Ⅲ)定義在I上的函數(shù)F(x),如果滿足:對任意x∈I,總存在常數(shù)M>0,都有-M≤F(x)≤M成立,則稱函數(shù)F(x)是I上的有界函數(shù),其中M為函數(shù)F(x)的上界.若函數(shù)h(x)=,當m≠0時,探求函數(shù)h(x)在x∈[0,1]上是否存在上界M,若存在,求出M的取值范圍,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),關(guān)于函數(shù)的性質(zhì),有以下四個推斷:
①的定義域是;
②的值域是;
③是奇函數(shù);
④是區(qū)間(0,2)內(nèi)的增函數(shù).
其中推斷正確的個數(shù)是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com