【題目】如圖所示,已知AB、C是長軸長為4的橢圓E上的三點,點A是長軸的一個端點,BC過橢圓中心O,且,|BC|=2|AC|.

(1)求橢圓E的方程;

(2)在橢圓E上是否存點Q,使得?若存在,有幾個(不必求出Q點的坐標),若不存在,請說明理由.

(3)過橢圓E上異于其頂點的任一點P,作的兩條切線,切點分別為M、N,若直線MNx軸、y軸上的截距分別為m、n,證明:為定值.

【答案】(1)(2)滿足條件的點Q存在,且有兩個(3)見解析,

【解析】試題分析:(1)依題意有,再根據(jù)幾何條件得三角形AOC為等腰直角三角形,即得點C的坐標,代入橢圓方程可得,(2)先用坐標化簡,得點Q在直線上,再根據(jù)直線與橢圓位置關系確定交點個數(shù),即得滿足條件的點Q個數(shù),(3)設點,先利用兩圓公共弦求切點弦MN方程,解得截距,根據(jù)點P在橢圓上化簡,得定值.

試題解析:(1)依題意知:橢圓的長半軸長,則A(2,0),

設橢圓E的方程為

由橢圓的對稱性知|OC|=|OB| 又∵,|BC|=2|AC|

ACBC,|OC|=|AC| ∴△AOC為等腰直角三角形,

∴點C的坐標為(1,1),點B的坐標為(-1,-1) ,

C的坐標(1,1)代入橢圓方程得

∴所求的橢圓E的方程為

(2)設在橢圓E上存在點Q,使得,設,則

即點Q在直線上,

∴點Q即直線與橢圓E的交點,

∵直線過點,而點橢圓在橢圓E的內(nèi)部,

∴滿足條件的點Q存在,且有兩個.

(3)設點,由M、N是的切點知,,

∴O、M、P、N四點在同一圓上,

且圓的直徑為OP,則圓心為,

其方程為,

-----④

即點M、N滿足方程④,又點M、N都在上,

∴M、N坐標也滿足方程---------------⑤

⑤-④得直線MN的方程為

,令

,又點P在橢圓E上,

,即=定值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

(1)當時,求的單調(diào)區(qū)間;

(2)若的圖象與軸交于兩點,起,求的取值范圍;

(3)令, ,證明: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐,底面為菱形,上的點,過的平面分別交,于點,,且平面.

(1)證明:;

(2)當的中點,,與平面所成的角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四面體S﹣ABC中,SA⊥平面ABC,∠BAC=120°,SA=AC=2,AB=1,則該四面體的外接球的表面積為

A. 11π B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4,坐標系與參數(shù)方程

已知在平面直角坐標系xOy中,橢圓C的方程為,以O為極點,x軸的非負半軸為極軸,取相同的長度單位建立極坐標系,直線的極坐標方程為

(1)求直線的直角坐標方程;

(2)設Mxy)為橢圓C上任意一點,求|x+y﹣1|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學為研究學生的身體素質(zhì)與課外體育鍛煉時間的關系,對該校200名高三學生平均每天課外體育鍛煉時間進行調(diào)查,如表:(平均每天鍛煉的時間單位:分鐘)

將學生日均課外體育鍛煉時間在的學生評價為“課外體育達標”.

(1)請根據(jù)上述表格中的統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表;

課外體育不達標

課外體育達標

合計

20

110

合計

(2)通過計算判斷是否能在犯錯誤的概率不超過0.01的前提下認為“課外體育達標”與性別有關?

參考格式:,其中

0.025

0.15

0.10

0.005

0.025

0.010

0.005

0.001

5.024

2.072

6.635

7.879

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】經(jīng)過中央電視臺《魅力中國城》欄目的三輪角逐,黔東南州以三輪競演總分排名第一名問鼎“最具人氣魅力城市”.如圖統(tǒng)計了黔東南州從2010年到2017年的旅游總?cè)藬?shù)(萬人次)的變化情況,從一個側(cè)面展示了大美黔東南的魅力所在.根據(jù)這個圖表,在下列給出的黔東南州從2010年到2017年的旅游總?cè)藬?shù)的四個判斷中,錯誤的是( )

A. 旅游總?cè)藬?shù)逐年增加

B. 2017年旅游總?cè)藬?shù)超過2015、2016兩年的旅游總?cè)藬?shù)的和

C. 年份數(shù)與旅游總?cè)藬?shù)成正相關

D. 從2014年起旅游總?cè)藬?shù)增長加快

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[2018·石家莊一檢]已知函數(shù)

(1)若,求函數(shù)的圖像在點處的切線方程;

(2)若函數(shù)有兩個極值點,,且,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱中,

側(cè)棱平面,為等腰直角三角形,,且,分別是的中點.

Ⅰ)求證:平面;

平面

Ⅱ)求直線與平面所成角.

查看答案和解析>>

同步練習冊答案