【題目】

已知關(guān)于的不等式.

(1)當(dāng)時,求此不等式的解集.

(2)求關(guān)于的不等式(其中)的解集.

【答案】(1) .

(2) ①當(dāng)時, ,

②當(dāng)時,

③當(dāng)時, .

【解析】試題分析:第一問將代入不等式,利用一元二次不等式的解法求得結(jié)果;第二問將不等式進行整理,將其進行因式分解,之后對進行討論,討論的標(biāo)準(zhǔn)就是根的大小以及符號.

(1) ;

所以不等式

再轉(zhuǎn)化為,…………………3

所以原不等式解集為…………………5

(2)不等式可化為

;…………………7

當(dāng)時, ,不等式的解集為;…………………9

當(dāng)時, ,不等式的解集為;…………………11

當(dāng)時, ,不等式的解集為;…………………13

綜上所述,原不等式解集為

①當(dāng)時, ,

②當(dāng)時, ,

③當(dāng)時, ;…………………14

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的函數(shù)f(x)=ex+mx2﹣m(m>0),當(dāng)x1+x2=1時,不等式f(x1)+f(0)>f(x2)+f(1)恒成立,則實數(shù)x1的取值范圍是(
A.(﹣∞,0)
B.
C.
D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點P是長軸長為 的橢圓Q: 上異于頂點的一個動點,O為坐標(biāo)原點,A為橢圓的右頂點,點M為線段PA的中點,且直線PA與OM的斜率之積恒為
(1)求橢圓Q的方程;
(2)設(shè)過左焦點F1且不與坐標(biāo)軸垂直的直線l交橢圓于C,D兩點,線段CD的垂直平分線與x軸交于點G,點G橫坐標(biāo)的取值范圍是 ,求|CD|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點為圓心的圓與軸交于軸交與,其中為原點.

(1)求證:的面積為定值;

(2)設(shè)直線與圓交于點,若,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位為綠化環(huán)境,移栽了甲、乙兩種大樹各2株.設(shè)甲、乙兩種大樹移栽的成活率分別為 ,且各株大樹是否成活互不影響.求移栽的4株大樹中:
(1)兩種大樹各成活1株的概率;
(2)成活的株數(shù)ξ的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某飛機失聯(lián),經(jīng)衛(wèi)星偵查,其最后出現(xiàn)在小島附近,現(xiàn)派出四艘搜救船,為方便聯(lián)絡(luò),船始終在以小島為圓心,100海里為半徑的圓上,船構(gòu)成正方形編隊展開搜索,小島在正方形編隊外(如圖).設(shè)小島的距離為,,船到小島的距離為.

(1)請分別求關(guān)于的函數(shù)關(guān)系式,并分別寫出定義域;

(2)當(dāng)兩艘船之間的距離是多少時搜救范圍最大(即最大)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系 中,直線 的參數(shù)方程為 為參數(shù)),以原點為極點, 軸正半軸為極軸建立極坐標(biāo)系,圓 的極坐標(biāo)方程為 .
(1)寫出直線 的普通方程及圓 的直角坐標(biāo)方程;
(2)點 是直線 上的點,求點 的坐標(biāo),使 到圓心 的距離最小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知單調(diào)遞增的等比數(shù)列滿足,且的等差中項.

(Ⅰ)求數(shù)列的通項公式;

(Ⅱ)若,對任意正數(shù)數(shù), 恒成立,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)雙曲線 (a>0,b>0)的左焦點為F1 , 左頂點為A,過F1作x軸的垂線交雙曲線于P、Q兩點,過P作PM垂直QA于M,過Q作QN垂直PA于N,設(shè)PM與QN的交點為B,若B到直線PQ的距離大于a+ ,則該雙曲線的離心率取值范圍是(
A.(1﹣
B.( ,+∞)
C.(1,2
D.(2 ,+∞)

查看答案和解析>>

同步練習(xí)冊答案