【題目】已知橢圓的離心率為,點在橢圓上.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)為原點,過原點的直線(不與軸垂直)與橢圓交于、兩點,直線、與軸分別交于點、.問:軸上是否存在定點,使得?若存在,求點的坐標;若不存在,說明理由.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了治理空氣污染,某市設(shè)個監(jiān)測站用于監(jiān)測空氣質(zhì)量指數(shù),其中在輕度污染區(qū)、中度污染區(qū)、重度污染區(qū)分別設(shè)有、、個監(jiān)測站,并以個監(jiān)測站測得的的平均值為依據(jù)播報該市的空氣質(zhì)量.
(1)若某日播報的為,已知輕度污染區(qū)平均值為,中度污染區(qū)平均值為,求重試污染區(qū)平均值;
(2)如圖是年月份天的的頻率分布直方圖,月份僅有天在內(nèi).
①某校參照官方公布的,如果周日小于就組織學(xué)生參加戶外活動,以統(tǒng)計數(shù)據(jù)中的頻率為概率,求該校學(xué)生周日能參加戶外活動的概率;
②環(huán)衛(wèi)部門從月份不小于的數(shù)據(jù)中抽取兩天的數(shù)據(jù)進行研究,求抽取的這兩天中值都在的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)增區(qū)間;
(2)函數(shù),當時,恒成立,求整數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的短軸長為2,離心率.過橢圓的右焦點作直線l(不與軸重合)與橢圓交于不同的兩點,.
(1)求橢圓的方程;
(2)試問在軸上是否存在定點,使得直線與直線恰好關(guān)于軸對稱?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸非負半軸為極軸建立極坐標系,點為曲線上的動點,點在線段的延長線上且滿足點的軌跡為.
(1)求曲線的極坐標方程;
(2)設(shè)點的極坐標為,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,平面平面,∥,,,,.
(1)求多面體的體積;
(2)已知是棱的中點,在棱是否存在點使得∥,若存在,請確定點的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為了解校園安全教育系列活動的成效,對全校學(xué)生進行了一次安全意識測試,根據(jù)測試成績評定“合格”“不合格”兩個等級,同時對相應(yīng)等級進行量化:“合格”記5分,“不合格”記0分.現(xiàn)隨機抽取部分學(xué)生的答卷,統(tǒng)計結(jié)果及對應(yīng)的頻率分布直方圖如下:
等級 | 不合格 | 合格 | ||
得分 | ||||
頻數(shù) | 6 | a | 24 | b |
(1)由該題中頻率分布直方圖求測試成績的平均數(shù)和中位數(shù);
(2)其他條件不變在評定等級為“合格”的學(xué)生中依次抽取2人進行座談,每次抽取1人,求在第1次抽取的測試得分低于80分的前提下,第2次抽取的測試得分仍低于80分的概率;
(3)用分層抽樣的方法,從評定等級為“合格”和“不合格”的學(xué)生中抽取10人進行座談.現(xiàn)再從這10人中任選4人,記所選4人的量化總分為,求的數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com