【題目】已知函數(shù).

1)求函數(shù)的單調(diào)增區(qū)間;

2)函數(shù),當(dāng)時,恒成立,求整數(shù)的最小值.

【答案】1)單調(diào)增區(qū)間是;單調(diào)減區(qū)間是22

【解析】

1)利用的導(dǎo)函數(shù)求得的單調(diào)增區(qū)間.

2)解法一:將不等式分離常數(shù),得到,構(gòu)造函數(shù),利用導(dǎo)數(shù)求得的最大值,由此求得的取值范圍,進(jìn)而求得的最小值.

解法二:將不等式分離常數(shù),得到,構(gòu)造函數(shù),對分成、兩種情況進(jìn)行分類討論,由此求得的取值范圍.

1)因為,

由于時,由,

所以函數(shù)的單調(diào)增區(qū)間是;單調(diào)減區(qū)間是;

2)解法一:因為,即,因為,

所以,令,

所以

設(shè),

,

所以時,,

上是增函數(shù),

因為,

當(dāng)時,

.

所以存在使,

所以當(dāng)時,,

當(dāng)時,

所以上增函數(shù),上是減函數(shù),

有最大值為

,

因為,所以,

,即整數(shù)的最小值為2.

解法二:因為,即,因為,

所以,令

i)當(dāng)時,因為,所以,

因此,所以只需;

ii)當(dāng)時,因為,則,

所以,

因此只需,即,

構(gòu)造函數(shù),

,

當(dāng)時,上單調(diào)遞減,;

當(dāng)時,,

,不滿足題意;

當(dāng)時,,

,故不滿足題意;

綜上可知,整數(shù)的最小值為2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市場研究人員為了了解產(chǎn)業(yè)園引進(jìn)的甲公司前期的經(jīng)營狀況,對該公司2018年連續(xù)六個月的利潤進(jìn)行了統(tǒng)計,并根據(jù)得到的數(shù)據(jù)繪制了相應(yīng)的折線圖,如圖所示

(1)由折線圖可以看出,可用線性回歸模型擬合月利潤(單位:百萬元)與月份代碼之間的關(guān)系,求關(guān)于的線性回歸方程,并預(yù)測該公司2019年3月份的利潤;

(2)甲公司新研制了一款產(chǎn)品,需要采購一批新型材料,現(xiàn)有,兩種型號的新型材料可供選擇,按規(guī)定每種新型材料最多可使用個月,但新材料的不穩(wěn)定性會導(dǎo)致材料損壞的年限不相同,現(xiàn)對,兩種型號的新型材料對應(yīng)的產(chǎn)品各件進(jìn)行科學(xué)模擬測試,得到兩種新型材料使用壽命的頻數(shù)統(tǒng)計如下表:

使用壽命

材料類型

個月

個月

個月

個月

總計

如果你是甲公司的負(fù)責(zé)人,你會選擇采購哪款新型材料?

參考數(shù)據(jù):,.參考公式:回歸直線方程為,其中 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的普通方程為,直線的參數(shù)方程為為參數(shù)),其中.以坐標(biāo)為極點,以軸非負(fù)半軸為極軸,建立極坐標(biāo)系.

1)求曲線的極坐標(biāo)方程和直線的普通方程;

2)設(shè)點,的極坐標(biāo)方程為,直線的交點分別為,.當(dāng)為等腰直角三角形時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點集,在中隨機(jī)取出三個點,則這三個點兩兩之間距離不超過2的概率為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】記無窮數(shù)列的前n,,,的最大項為,第n項之后的各項,,的最小項為

1)若數(shù)列的通項公式為,寫出,;

2)若數(shù)列的通項公式為,判斷是否為等差數(shù)列,若是,求出公差;若不是,請說明理由;

3)若數(shù)列為公差大于零的等差數(shù)列,求證:是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,點在橢圓.

)求橢圓的方程;

)設(shè)為原點,過原點的直線(不與軸垂直)與橢圓交于、兩點,直線、軸分別交于點、.問:軸上是否存在定點,使得?若存在,求點的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正方體的棱長為2,點分別是棱的中點,則二面角的余弦值為_________;若動點在正方形(包括邊界)內(nèi)運動,且平面,則線段的長度范圍是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年世界讀書日,陳老師給全班同學(xué)開了一份書單,推薦同學(xué)們閱讀,并在2020年世界讀書日時交流讀書心得.經(jīng)了解,甲、乙兩同學(xué)閱讀書單中的書本有如下信息:

①甲同學(xué)還剩的書本未閱讀;

②乙同學(xué)還剩5本未閱讀;

③有的書本甲、乙兩同學(xué)都沒閱讀.

則甲、乙兩同學(xué)已閱讀的相同的書本有(

A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1是由邊長為4的正六邊形,矩形,組成的一個平面圖形,將其沿折起得幾何體,使得,且平面平面,如圖2.

1)證明:圖2中,平面平面;

2)設(shè)點M為圖2中線段上一點,且,若直線平面,求圖2中的直線與平面所成角的正弦值

查看答案和解析>>

同步練習(xí)冊答案