【題目】如圖,五邊形中,四邊形為長方形,為邊長為的正三角形,將沿折起,使得點在平面上的射影恰好在上.
(Ⅰ)當(dāng)時,證明:平面平面;
(Ⅱ)若,求平面與平面所成二面角的余弦值的絕對值.
【答案】(Ⅰ)證明見解析;(Ⅱ).
【解析】
試題
(Ⅰ)作,垂足為,依題意得平面,則,平面,,結(jié)合勾股定理可得,則平面,平面平面.
(Ⅱ)由幾何關(guān)系,以為軸建立空間直角坐標(biāo)系,由題意可得平面的法向量,平面的法向量.計算可得平面與平面所成二面角的余弦值的絕對值為.
試題解析:
(Ⅰ)作,垂足為,依題意得平面,,
又,平面,
利用勾股定理得,同理可得.
在中,
平面,又平面,
所以平面平面
(Ⅱ)連結(jié),,,
,又四邊形為長方形,.
取中點為,得∥,連結(jié),
其中,,
由以上證明可知互相垂直,不妨以為軸建立空間直角坐標(biāo)系.,
,
設(shè)是平面的法向量,
則有即,
令得
設(shè)是平面的法向量,
則有即
令得.
則
所以平面與平面所成二面角的余弦值的絕對值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知空間幾何體中,與均為邊長為的等邊三角形,為腰長為的等腰三角形,平面平面,平面平面.
(1)試在平面內(nèi)作一條直線,使直線上任意一點與的連線均與平面平行,并給出詳細(xì)證明;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若函數(shù)在時取得極值,求實數(shù)的值;
(Ⅱ)當(dāng)時,求零點的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,函數(shù)在第一象限內(nèi)的圖像如圖所示,試做如下操作:把x軸上的區(qū)間等分成n個小區(qū)間,在每一個小區(qū)間上作一個小矩形,使矩形的右端點落在函數(shù)的圖像上.若用表示第k個矩形的面積,表示這n個叫矩形的面積總和.
(1)求的表達(dá)式;
(2)利用數(shù)學(xué)歸納法證明,并求出的表達(dá)式
(3)求的值,并說明的幾何意義.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點為,為軸上的點.
(1)過點作直線與相切,求切線的方程;
(2)如果存在過點的直線與拋物線交于,兩點,且直線與的傾斜角互補,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:,其中,點是橢圓的右頂點,射線:與橢圓的交點為.
(1)求點的坐標(biāo);
(2)設(shè)橢圓的長半軸、短半軸的長分別為、,當(dāng)的值在區(qū)間中變化時,求的取值范圍;
(3)在(2)的條件下,以為焦點,為頂點且開口方向向左的拋物線過點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,底面是邊長為2的正方形,底面,四棱錐的體積,M是的中點.
(1)求異面直線與所成角的余弦值;
(2)求點B到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)定義在上的函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若存在,使得成立,求實數(shù)的取值范圍;
(3)定義:如果實數(shù)滿足, 那么稱比更接近.對于(2)中的及,問:和哪個更接近?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知方程的曲線是圓C,
(1)若直線l:與圓C相交于M、N兩點,且(O為坐標(biāo)原點),求實數(shù)m的值;
(2)當(dāng)時,設(shè)T為直線n:上的動點,過T作圓C的兩條切線TG、TH,切點分別為G、H,求四邊形TGCH而積的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com