精英家教網 > 高中數學 > 題目詳情

甲、乙兩位學生參加數學競賽培訓.現(xiàn)分別從他們在培訓期間參加的若干次預賽成績中隨機抽取8次.記錄如下:
甲:82 81 79 78 95 88 93 84
乙:92 95 80 75 83 80 90 85
(1)畫出甲、乙兩位學生成績的莖葉圖,指出學生乙成績的中位數;
(2)現(xiàn)要從中選派一人參加數學競賽,從平均狀況和方差的角度考慮,你認為派哪位學生參加合適?請說明理由.

(1)莖葉圖如下:
………………2分
學生乙成績中位數為84,…………4分
(2)派甲參加比較合適,理由如下:

………………5分
=35.5

=41……………………7分

∴甲的成績比較穩(wěn)定,派甲參加比較合適

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

(本題12分)某班同學利用寒假在5個居民小區(qū)內選擇兩個小區(qū)逐戶進行一次“低碳生活習慣”的調查,以計算每戶的碳月排放量.若月排放量符合低碳標準的稱為“低碳族”,否則稱為“非低碳族”.若小區(qū)內有至少的住戶屬于“低碳族”,則稱這個小區(qū)為“低碳小區(qū)”,否則稱為“非低碳小區(qū)” .若備選的5個居民小區(qū)中有三個非低碳小區(qū),兩個低碳小區(qū).

(1)求所選的兩個小區(qū)恰有一個為“非低碳小區(qū)”的概率;
(2)假定選擇的“非低碳小區(qū)”為小區(qū),調查顯示其“低碳族”的比例為1:2,數據如圖1所示,經過大力宣傳,三個月后又進行一次調查,數據如圖2所示,問這時小區(qū)是否達到“低碳小區(qū)”的標準?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分12分)
某車間甲組有10名工人,其中有4名女工人;乙組有5名工人,其中有3名女工人,現(xiàn)在采用分層抽樣法(層內采用不放回的簡單隨機抽樣)從甲,乙兩組中共抽取3人進行技術考核.
(1)求甲,乙兩組各抽取的人數;
(2)求從甲組抽取的工人中恰有1名女工的概率;
(3)令X表示抽取的3名工人中男工人的人數,求X的分布列及數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

為抗擊金融風暴,某系統(tǒng)決定對所屬企業(yè)給予低息貸款的扶持,該系統(tǒng)制定了評分標準,并根據標準對企業(yè)進行評估,然后依據評估得分將這些企業(yè)分別定為優(yōu)秀、良好、合格、不合格四個等級,并根據等級分配相應的低息貸款數額,為了更好地掌握貸款總額,該系統(tǒng)隨機抽查了所屬的部分企業(yè).一下圖表給出了有關數據(將頻率看做概率)
(1)任抽一家所屬企業(yè),求抽到的企業(yè)等級是優(yōu)秀或良好的概率;
(2)對照標準,企業(yè)進行了整改.整改后,如果優(yōu)秀企業(yè)數量不變,不合格企業(yè)、合格企業(yè)、良好企業(yè)的數量成等差數列.要使所屬企業(yè)獲得貸款的平均值(即數學期望)不低于410萬元,那么整改后不合格企業(yè)占企業(yè)總數百分比的最大值是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題12分)甲、乙兩位學生參加數學競賽培訓,在培訓期間,他們參加的5項預賽成績記錄如下:


82
82
79
95
87

95
75
80
90
85
(1)從甲、乙兩人的成績中各隨機抽取一個,求甲的成績比乙高的概率;
(2)現(xiàn)要從中選派一人參加數學競賽,從統(tǒng)計學的角度考慮,你認為選派哪位學生參加合適?說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在學校開展的綜合實踐活動中,某班進行了小制作評比,作品上交時間為5 月1日至30日,評委會把同學們上交作品的件數按5天一組分組統(tǒng)計,繪制了頻率分布直方圖(如圖),已知從左到右各長方形的高的比為2:3:4:6:4:1,第三組的頻數為12,請回答下列問題:

(1)本次活動共有多少件作品參加評比?
(2)經過評比,第四組和第六組分別有10件和2件 作品獲獎,問這兩組哪組獲獎率更高?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題


(12分)(理)在某校舉行的數學競賽中,全體參賽學生的競賽成績近似服從正態(tài)分布。已知成績在90分以上(含90分)的學生有12名。
(Ⅰ)、試問此次參賽學生總數約為多少人?
(Ⅱ)、若該校計劃獎勵競賽成績排在前50名的學生,試問設獎的分數線約為多少分?可共查閱的(部分)標準正態(tài)分布表


0
1
2
3
4
5
6
7
8
9
1.2
1.3
1.4
1.9
2.0
2.1
0.8849
0.9032
0.9192
0.9713
0.9772
0.9821
0.8869
0.9049
0.9207
0.9719
0.9778
0.9826
0.888
0.9066
0.9222
0.9726
0.9783
0.9830
0.8907
0.9082
0.9236
0.9732
0.9788
0.9834
0.8925
0.9099
0.9251
0.9738
0.9793
0.9838
0.8944
0.9115
0.9265
0.9744
0.9798
0.9842
0.8962
0.9131
0.9278
0.9750
0.9803
0.9846
0.8980
0.9147
0.9292
0.9756
0.9808
0.9850
0.8997
0.9162
0.9306
0.9762
0.9812
0.9854
0.9015
0.9177
0.9319
0.9767
0.9817
0.9857
 

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分13分)
某種產品的廣告費支出與銷售額(單位:萬元)之間有如下對應數據:


2
4
5
6
8

30
40
60
50
70
 
(Ⅰ)求回歸直線方程;
(Ⅱ)試預測廣告費支出為10萬元時,銷售額多大?
(Ⅲ)在已有的五組數據中任意抽取兩組,求至少有一組數據其預測值與實際值之差的
絕對值不超過5的概率。
(參考數據:    ,
參考公式:回歸直線方程,其中 )

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

((本小題滿分14分)
某種產品的廣告費支出x與銷售額y(單位:百萬元)之間有如下的對應數據:

x
2
4
5
6
8
y
30
40
50
60
70
(1)請畫出上表數據的散點圖;
(2)請根據上表提供的數據,用最小二乘法求出y關于x的線性回歸方程=x+;
(3)要使這種產品的銷售額突破一億元(含一億元),則廣告費支出至少為多少百萬元?
(結果精確到0.1,參考數據:2×30+4×40+5×50+6×60+8×70=1390)。

查看答案和解析>>

同步練習冊答案