在學(xué)校開展的綜合實(shí)踐活動(dòng)中,某班進(jìn)行了小制作評(píng)比,作品上交時(shí)間為5 月1日至30日,評(píng)委會(huì)把同學(xué)們上交作品的件數(shù)按5天一組分組統(tǒng)計(jì),繪制了頻率分布直方圖(如圖),已知從左到右各長方形的高的比為2:3:4:6:4:1,第三組的頻數(shù)為12,請(qǐng)回答下列問題:

(1)本次活動(dòng)共有多少件作品參加評(píng)比?
(2)經(jīng)過評(píng)比,第四組和第六組分別有10件和2件 作品獲獎(jiǎng),問這兩組哪組獲獎(jiǎng)率更高?

(1)本次活動(dòng)共有60件作品參加評(píng)比.(2)第六組獲獎(jiǎng)率更高

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題12分)一個(gè)質(zhì)地均勻的正四面體的四個(gè)面上分別標(biāo)示著數(shù)字1、2、3、4,一個(gè)質(zhì)地均勻的骰子(正方體)的六個(gè)面上分別標(biāo)示數(shù)字1、2、3、4、5、6,先后拋擲一次正四面體和骰子。
⑴列舉出全部基本事件;
⑵求被壓在底部的兩個(gè)數(shù)字之和小于5的概率;
⑶求正四面體上被壓住的數(shù)字不小于骰子上被壓住的數(shù)字的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)2012年3月2日,國家環(huán)保部發(fā)布了新修訂的《環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》.其中規(guī)定:居民區(qū)中的PM2.5年平均濃度不得超過35微克/立方米,PM2.5的24小時(shí)平均濃度不得超過75微克/立方米. 某城市環(huán)保部門隨機(jī)抽取了一居民區(qū)去年40天的PM2.5的24小時(shí)平均濃度的監(jiān)測(cè)數(shù)據(jù),數(shù)據(jù)統(tǒng)計(jì)如下:

組別
PM2.5(微克/立方米)
頻數(shù)(天)
頻 率
第一組
(0,15]
4
0.1
第二組
(15,30]
12

第三組
(30,45]
8
0.2
第四組
(45,60]
8
0.2
第五組
(60,75]

0.1
第六組
(75,90)
4
0.1
(Ⅰ)試確定的值,并寫出該樣本的眾數(shù)和中位數(shù)(不必寫出計(jì)算過程);
(Ⅱ)完成相應(yīng)的頻率分布直方圖.
(Ⅲ)求出樣本的平均數(shù),并根據(jù)樣本估計(jì)總體的思想,從PM2.5的年平均濃度考慮,判斷該居民區(qū)的環(huán)境是否需要改進(jìn)?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)某班主任對(duì)班級(jí)22名學(xué)生進(jìn)行了作業(yè)量多少的調(diào)查,數(shù)據(jù)如下表:在喜歡玩電腦游戲的12中,有10人認(rèn)為作業(yè)多,2人認(rèn)為作業(yè)不多;在不喜歡玩電腦游戲的10人中,有3人認(rèn)為作業(yè)多,7人認(rèn)為作業(yè)不多.
(1)根據(jù)以上數(shù)據(jù)建立一個(gè)列聯(lián)表;
(2)試問喜歡電腦游戲與認(rèn)為作業(yè)多少是否有關(guān)系?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲、乙兩位學(xué)生參加數(shù)學(xué)競賽培訓(xùn).現(xiàn)分別從他們?cè)谂嘤?xùn)期間參加的若干次預(yù)賽成績中隨機(jī)抽取8次.記錄如下:
甲:82 81 79 78 95 88 93 84
乙:92 95 80 75 83 80 90 85
(1)畫出甲、乙兩位學(xué)生成績的莖葉圖,指出學(xué)生乙成績的中位數(shù);
(2)現(xiàn)要從中選派一人參加數(shù)學(xué)競賽,從平均狀況和方差的角度考慮,你認(rèn)為派哪位學(xué)生參加合適?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題


三、解答題:解答應(yīng)寫出文字說明、證明過程或演算步驟(本大題共6個(gè)大題,共76分)。
17.(12分)以下資料是一位銷售經(jīng)理收集來的每年銷售額和銷售經(jīng)驗(yàn)?zāi)陻?shù)的關(guān)系:

銷售經(jīng)驗(yàn)(年)
 
1
 
3
 
4
 
4
 
6
 
8
 
10
 
10
 
11
 
13
 
年銷售額(千元)
 
80
 
97
 
92
 
102
 
103
 
111
 
119
 
123
 
117
 
136
 
 (1)依據(jù)這些數(shù)據(jù)畫出散點(diǎn)圖并作直線=78+4.2x,計(jì)算(yii2; 
(2)依據(jù)這些數(shù)據(jù)由最小二乘法求線性回歸方程,并據(jù)此計(jì)算;
(3)比較(1)和(2)中的殘差平方和的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)為了了解某年段1000名學(xué)生的百米成績情況,隨機(jī)抽取了若
干學(xué)生的百米成績,成績?nèi)拷橛?3秒與18秒之間,將成績按如下方式分成五組:第一組
[13,14);第二組[14,15);……;第五組[17,18].按上述分組方法得到的頻率分布直方圖如
圖所示,已知圖中從左到右的前3個(gè)組的頻率之比為3∶8∶19,且第二組的頻數(shù)為8.
(1)將頻率當(dāng)作概率,請(qǐng)估計(jì)該年段學(xué)生中百米成績?cè)赱16,17)內(nèi)的人數(shù);
(2)求調(diào)查中隨機(jī)抽取了多少個(gè)學(xué)生的百米成績;
(3)若從第一、五組中隨機(jī)取出兩個(gè)成績,求這兩個(gè)成績的差的絕對(duì)值大于1秒的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:

日   期
1月10日
2月10日
3月10日
4月10日
5月10日
6月10日
晝夜溫差
10
11
13
12
8
6
就診人數(shù)個(gè)
22
25
29
26
16
12
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
⑴求選取的2組數(shù)據(jù)恰好是相鄰兩個(gè)月的概率;
⑵若選取的是1月與6月的兩組數(shù)據(jù),請(qǐng)根據(jù)2至5月份的數(shù)據(jù),求出關(guān)于的線性回歸方程;
⑶若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問該小組所得線性www.ks5u.com回歸方程是否理想?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
下表是關(guān)于某設(shè)備的使用年限(年)和所需要的維修費(fèi)用(萬元)的幾組統(tǒng)計(jì)數(shù)據(jù):


2
3
4
5
6

2.2
3.8
5.5
6.5
7.0
(1)請(qǐng)?jiān)诮o出的坐標(biāo)系中畫出上表數(shù)據(jù)的散點(diǎn)圖;
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程
(3)估計(jì)使用年限為10年時(shí),維修費(fèi)用為 多少?
(參考數(shù)值:)

查看答案和解析>>

同步練習(xí)冊(cè)答案