【題目】如圖,在三棱柱中,底面是邊長(zhǎng)為2的等邊三角形, 的中點(diǎn).

(1)求證: 平面;

(2)若四邊形是正方形,且,求直線與平面所成角的正弦值.

【答案】(1)詳見(jiàn)解析(2

【解析】試題分析:(1)連AC1,設(shè)AC1A1C相交于點(diǎn)O,先利用中位線定理證明DO∥BC1,再利用線面平行的判定定理證明結(jié)論即可;(2)推導(dǎo)出三棱柱ABC-A1B1C1是正三棱柱,以C為原點(diǎn),CBx軸,CC1y軸,過(guò)C作平面CBB1C1的垂線為z軸,建立空間直角坐標(biāo)系,利用向量法能求出直線A1D與平面CBB1C1所成角的正弦值

試題解析:(1)證明:連結(jié),設(shè)相交于點(diǎn),連接,則中點(diǎn),

的中點(diǎn), ……2

平面. ……4

2)取的中點(diǎn),連結(jié),則

,故,

,平面……8

中點(diǎn),連結(jié),過(guò)點(diǎn)作,則

連結(jié), ,

為直線與平面所成的角, ……10

即直線與平面所成的角的正弦值為. ……12

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(1)當(dāng),時(shí),求函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)時(shí),對(duì)任意恒成立,求實(shí)數(shù)的取值范圍;

(3)設(shè)函數(shù)的圖象在兩點(diǎn),處的切線分別為,,,,求實(shí)數(shù)最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)訄A過(guò)點(diǎn),且被軸截得的線段長(zhǎng)為4,記動(dòng)圓圓心的軌跡為曲線

1)求曲線的方程;

2)問(wèn): 軸上是否存在一定點(diǎn),使得對(duì)于曲線上的任意兩點(diǎn),當(dāng)時(shí),恒有的面積之比等于?若存在,則求點(diǎn)的坐標(biāo),否則說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線的方程為:,為常數(shù)).

(Ⅰ)判斷曲線的形狀;

(Ⅱ)設(shè)直線與曲線交于不同的兩點(diǎn)、,且,求曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求的值域;

(2)設(shè)函數(shù),若對(duì)任意,總存在,使得

立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為,,短軸的兩個(gè)端點(diǎn)分別為,

1)若為等邊三角形,求橢圓的方程;

2)若橢圓的短軸長(zhǎng)為2,過(guò)點(diǎn)的直線與橢圓相交于、兩點(diǎn),且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為圓上的動(dòng)點(diǎn), ,為定點(diǎn),

(1)求線段中點(diǎn)M的軌跡方程;

(2)若,求線段中點(diǎn)N的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,空間四邊形ABCD中,E,FG,H分別是AB,BC,CDDA上的點(diǎn),且滿足

(1)求證:四邊形EFGH是梯形;

(2)若BDa,求梯形EFGH的中位線的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)的最小值為,求的值;

(2)證明: .

查看答案和解析>>

同步練習(xí)冊(cè)答案