【題目】A在直角坐標系中,曲線的參數(shù)方程為,( 為參數(shù)),直線的方程為以為極點, 軸的正半軸為極軸建立極坐標系.
(1)求曲線和直線的極坐標方程;
(2)若直線與曲線交于兩點,求
已知不等式的解集為.
(1)求的值;
(2)若,求證:
科目:高中數(shù)學 來源: 題型:
【題目】為了對某課題進行研究,用分層抽樣方法從三所高校的相關(guān)人員中,抽取若干人組成研究小組,有關(guān)數(shù)據(jù)見下表(單位:人)
高校 | 相關(guān)人數(shù) | 抽取人數(shù) |
A | 18 | |
B | 36 | 2 |
C | 54 |
(Ⅰ)求,;
(Ⅱ)若從高校抽取的人中選2人作專題發(fā)言,求這二人都來自高校的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線: 的焦點為,過點的直線與相交于、兩點,點關(guān)于軸的對稱點為.
(Ⅰ)判斷點是否在直線上,并給出證明;
(Ⅱ)設(shè),求的內(nèi)切圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為響應國家“精準扶貧,產(chǎn)業(yè)扶貧“的戰(zhàn)略,進一步優(yōu)化能源消費結(jié)構(gòu),某市決定在一地處山區(qū)的縣推進光伏發(fā)電項目,在該縣山區(qū)居民中隨機抽取50戶,統(tǒng)計其年用電量得到以下統(tǒng)計表,以樣本的頻率作為概率.
用電量(度) | |||||
戶數(shù) | 5 | 15 | 10 | 15 | 5 |
(1)在該縣山區(qū)居民中隨機抽取10戶,記其中年用電量不超過600度的戶數(shù)為,求的數(shù)學期望;
(2)已知該縣某山區(qū)自然村有居民300戶,若計劃在該村安裝總裝機容量為300千瓦的光伏發(fā)電機組,該機組所發(fā)電量除保證該村正常用電外,剩余電量國家電網(wǎng)以元/度進行收購.經(jīng)測算以每千瓦裝機容量平均發(fā)電1000度,試估計該機組每年所發(fā)電量除保證正常用電外還能為該村創(chuàng)造直接收益多少元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正四棱錐中, ,側(cè)棱與底面所成角的正切值為.
(1)若是中點,求異面直線與所成角的正切值;
(2)求側(cè)面與底面所成二面角的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知橢圓的長軸長是短軸長的倍,右焦點為,點分別是該橢圓的上、下頂點,點是直線上的一個動點(與軸交點除外),直線交橢圓于另一點,記直線, 的斜率分別為
(1)當直線過點時,求的值;
(2)求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在三棱錐中, 和是邊長為的等邊三角形, , 是中點, 是中點.
(Ⅰ)求證:平面平面;
(Ⅱ)求直線與平面所成角的正弦值的大;
(Ⅲ)在棱上是否存在一點,使得的余弦值為?若存在,指出點在上的位置;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在多面體中,△是等邊三角形,△是等腰直角三角形,,平面平面,平面,點為的中點,連接.
(1)求證:∥平面;
(2)若,求三棱錐的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com