【題目】已知等比數(shù)列{an}的各項(xiàng)均為正數(shù),且2a13a2=1,

求數(shù)列{an}的通項(xiàng)公式;

設(shè)bn=log3a1+log3a2+…+log3an,求數(shù)列的前n項(xiàng)和

【答案】an

【解析】

試題分析:設(shè)出等比數(shù)列的公比q,由,利用等比數(shù)列的通項(xiàng)公式化簡后得到關(guān)于q的方程,由已知等比數(shù)列的各項(xiàng)都為正數(shù),得到滿足題意q的值,然后再根據(jù)等比數(shù)列的通項(xiàng)公式化簡,把求出的q的值代入即可求出等比數(shù)列的首項(xiàng),根據(jù)首項(xiàng)和求出的公比q寫出數(shù)列的通項(xiàng)公式即可;求出數(shù)列{an}的通項(xiàng)公式代入設(shè)bn=log3a1+log3a2+…+log3an,利用對數(shù)的運(yùn)算性質(zhì)及等差數(shù)列的前n項(xiàng)和的公式化簡后,即可得到bn的通項(xiàng)公式,求出倒數(shù)即為的通項(xiàng)公式,然后根據(jù)數(shù)列的通項(xiàng)公式列舉出數(shù)列的各項(xiàng),抵消后即可得到數(shù)列{}的前n項(xiàng)和

試題解析:設(shè)數(shù)列{an}的公比為q,由9a2a6=9,所以q2

由條件可知q>0,故q=2a13a2=1得2a13a1q=1,所以a1

故數(shù)列{an}的通項(xiàng)公式為an

bn=log3a1+log3a2+…+log3an=-1+2+…+n=-

所以數(shù)列的前n項(xiàng)和為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圍建一個面積為的矩形場地,要求矩形場地的一面利用舊墻利用舊墻需維修,其它三面圍墻要新建,在舊墻的對面的新墻上要留一個寬度為2的進(jìn)出口,如圖所示,已知舊墻的維修費(fèi)用為元/,新墻的造價為元/,設(shè)利用的舊墻的長度為,費(fèi)用為元.

1表示為的函數(shù);

2試確定的值,使得修建此矩形場地圍墻的總費(fèi)用最小,并求出最小總費(fèi)用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)統(tǒng)計(jì)資料,我國能源生產(chǎn)自1992年以來發(fā)展很快,下面是我國能源生產(chǎn)總量(折合億噸標(biāo)準(zhǔn)煤)的幾個統(tǒng)計(jì)數(shù)據(jù):1992年8.6億噸,5年后的1997年10.4億噸,10年后的2002年12.9億噸.有關(guān)專家預(yù)測,到2007年我國能源生產(chǎn)總量將達(dá)到17.1億噸,則專家是依據(jù)下列哪一類函數(shù)作為數(shù)學(xué)模型進(jìn)行預(yù)測的(

A.一次函數(shù) B.二次函數(shù) C.指數(shù)函數(shù) D.對數(shù)函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知:函數(shù)fx)=loga(2+x)-loga(2-x)(a>0且a1)

)求fx)定義域;

)判斷fx)的奇偶性,并說明理由;

)求使fx)>0的x的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)).

(1)當(dāng)時,討論的單調(diào)性;

(2)當(dāng)時,求在區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將參加夏令營的500名學(xué)生編號為:001,002,…,500,采用系統(tǒng)抽樣的方法抽取一個容量為50的樣本,且隨機(jī)抽得的號碼為003,這500名學(xué)生分住在三個營區(qū),從001到200在第一營區(qū),從201到355在第二營區(qū),從356到500在第三營區(qū),三個營區(qū)被抽中的人數(shù)分別為

A20,15,15 B20,16,14 C12,14,16 D21,15,14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】教室內(nèi)有一直尺,無論怎樣放置,在地面總有這樣的直線,使得它與直尺所在直線 ( )

A. 平行 B. 垂直 C. 相交 D. 異面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題正確的是

A. 四邊形確定一個平面

B. 經(jīng)過一條直線和一個點(diǎn)確定一個平面

C. 經(jīng)過三點(diǎn)確定一個平面

D. 兩兩相交且不共點(diǎn)的三條直線確定一個平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將圓每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼?/span>倍,得到曲線.

(1)寫出的參數(shù)方程;

(2)設(shè)直線的交點(diǎn)為,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,求:過線段的中點(diǎn)且與垂直的直線的極坐標(biāo)方程.

查看答案和解析>>

同步練習(xí)冊答案