【題目】設(shè)數(shù)列是公差大于的等差數(shù)列, 為數(shù)列的前項和.已知,且構(gòu)成等比數(shù)列.

(1)求數(shù)列的通項公式;

(2)若數(shù)列滿足,設(shè)是數(shù)列的前項和,證明: .

【答案】(1);(2)證明見解析.

【解析】試題分析:(1)(1)利用等差數(shù)列前n項和、通項公式和等比數(shù)列,列出方程組,求出首項與公差,由此能求出數(shù)列{an}的通項公式.
(2)推導出bn=(2n1) 利用錯位相減法求出數(shù)列{bn}的前n項和,由此能證明Tn<6

試題解析:

(1)設(shè)數(shù)列{an}的公差為d,則d>0.

因為S3=9,所以a1a2a33a2=9,即a23.

因為2a1,a31,a4+1構(gòu)成等比數(shù)列,

所以(2+d)22(3d)(42d),

所以d=2.所以ana2(n2)d2n1.

(2)證明:因為2n1(nN*),所以bn(2n1) ,

所以Tn(2n1)×,

所以Tn(2n3)×(2n1)×,

由①②兩式相減得Tn1(2n1)×13,整理化簡得Tn6.又因為nN*,所以Tn6<6.

點睛:用錯位相減法求和應注意的問題:(1)要善于識別題目類型,特別是等比數(shù)列公比為負數(shù)的情形;(2)在寫出“Sn”與“qSn”的表達式時應特別注意將兩式“錯項對齊”以便下一步準確寫出“SnqSn”的表達式;(3)在應用錯位相減法求和時,若等比數(shù)列的公比為參數(shù),應分公比等于1和不等于1兩種情況求解.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,矩形所在平面與半圓弧所在平面垂直,上異于的點

(1)證明:平面平面

(2)在線段上是否存在點,使得平面?說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市為了制定合理的節(jié)水方案,對居民用水情況進行了調(diào)查,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.

(I)求直方圖中的a值;

(II)設(shè)該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某研究所計劃利用“神舟十一號”飛船進行新產(chǎn)品搭載實驗,計劃搭載新產(chǎn)品,要根據(jù)該產(chǎn)品的研制成本、產(chǎn)品質(zhì)量、搭載實驗費用和預計產(chǎn)生收益來決定具體安排,通過調(diào)查,搭載每件產(chǎn)品有關(guān)數(shù)據(jù)如表:

因素

產(chǎn)品

產(chǎn)品

備注

研制成本、搭載費用之和/萬元

20

30

計劃最大投資

金額300萬元產(chǎn)品質(zhì)量/千克

10

5

最大搭載

質(zhì)量110千克預計收益/萬元

80

60

——

則使總預計收益達到最大時, 兩種產(chǎn)品的搭載件數(shù)分別為(  )

A. 9,4 B. 8,5 C. 9,5 D. 8,4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從集合中任取三個不同的元素作為直線的值,若直線傾斜角小于,且軸上的截距小于,那么不同的直線條數(shù)有( )

A. 109B. 110C. 111D. 120

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】研究發(fā)現(xiàn),北京 PM 2.5 的重要來源有土壤塵、燃煤、生物質(zhì)燃燒、汽車尾氣與垃圾焚燒、工業(yè)污染和二次無機氣溶膠,其中燃煤的平均貢獻占比約為 18%.為實現(xiàn)“節(jié)能減排”,還人民“碧水藍天”,北京市推行“煤改電”工程,采用空氣源熱泵作為冬天供暖.進入冬季以來,該市居民用電量逐漸增加,為保證居民取暖,市供電部門對該市 100 戶居民冬季(按 120 天計算)取暖用電量(單位:度)進行統(tǒng)計分析,得到居民冬季取暖用電量的頻率分布直方圖如圖所示.

(1)求頻率分布直方圖中的值;

(2)從這 100 戶居民中隨機抽取 1 戶進行深度調(diào)查,求這戶居民冬季取暖用電量在[3300,3400]的概率;

(3)在用電量為[3200,3250),[3250,3300),[3300,3350),[3350,3400]的四組居民中,用分層抽樣的方法抽取 34 戶居民進行調(diào)查,則應從用電量在[3200,3250)的居民中抽取多少戶?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下表數(shù)據(jù)為某地區(qū)某種農(nóng)產(chǎn)品的年產(chǎn)量(單位:噸)及對應銷售價格(單位:千元/噸).

1

2

3

4

5

70

65

55

38

22

1)若有較強的線性相關(guān)關(guān)系,根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

2)若該農(nóng)產(chǎn)品每噸的成本為13.1千元,假設(shè)該農(nóng)產(chǎn)品可全部賣出,利用上問所求的回歸方程,預測當年產(chǎn)量為多少噸時,年利潤最大?

(參考公式:回歸直線方程為,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】△ABC中,角A,BC對應的邊分別是a,b,c,已知cos2A﹣3cosB+C=1

1)求角A的大;

2)若△ABC的面積S=5,b=5,求sinBsinC的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

在平面直角坐標系中,直線的參數(shù)方程為為參數(shù), 為直線的傾斜角,且),以原點為極點, 軸的正半軸為極軸建立極坐標系,圓的極坐標方程為.

(1)若直線經(jīng)過圓的圓心,求直線的傾斜角;

(2)若直線與圓交于, 兩點,且,點,求的取值范圍.

查看答案和解析>>

同步練習冊答案