若sinθ•cosθ>0,且tanθ•cosθ<0,則角θ的終邊落在(  )
A、第一象限B、第二象限
C、第三象限D、第四象限
考點(diǎn):三角函數(shù)值的符號
專題:三角函數(shù)的圖像與性質(zhì)
分析:根據(jù)題意和“一全正、二正弦、三正切、四余弦”進(jìn)行判斷θ終邊所在的位置.
解答: 解:∵sinθ•cosθ>0,∴θ是第一或第三象限角,
∵cosθ•tanθ<0,∴θ是第三或第四象限角,
則角θ的終邊落在第三象限.
故選:C.
點(diǎn)評:本題的考點(diǎn)是三角函數(shù)值得符號判斷,需要利用題中三角函數(shù)的不等式和“一全正、二正弦、三正切、四余弦”對角的終邊位置進(jìn)行判斷
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)[x]表示不超過x的最大整數(shù)(如[2]=2,[
3
2
]=1
).對于給定的n∈N*,定義Cnx=
n(n-1)…(n-[x]+1)
x(x-1)…(x-[x]+1)
,x∈[1,+∞),則當(dāng)x∈[
5
4
,3)
時(shí),函數(shù)f(x)=C8x的值域?yàn)椋ā 。?/div>
A、(4,
32
5
]
B、(4,
32
5
]∪(
28
3
,28]
C、[4,
32
5
)∪(
28
3
,28]
D、[
28
3
,28]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
-x2+2x
的單調(diào)增區(qū)間是( 。
A、[0,1]
B、(-∞,1]
C、[1,+∞)
D、[1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖中的程序框,如果輸入的t∈[-1,3],則輸出的S屬于區(qū)間
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A={x|x2+ax+12=0},B={x|x2+3x+2b=0},A∩B={2}.
(1)求實(shí)數(shù)a、b的值及集合A、B;
(2)設(shè)全集U=A∪B,求(∁UA)∪(∁UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={2,a},B={2a,2},若A=B,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

寫出命題“若x2+y2=0,則xy=0”的逆命題、否命題、逆否命題,并判斷其真假.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在復(fù)平面內(nèi),復(fù)數(shù)z=i4+i2015的共軛復(fù)數(shù)對應(yīng)的點(diǎn)位于( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題:①sin2x+
4
sin2x
的最小值為4.
②若x、y∈R+,且
1
x
+
9
y
=1,則x+y的最小值是12.
③點(diǎn)P(-1,2)到直線l:ax+y+a2+a=0的距離不小于2.
④直線y=x•tanα(0<α<π,α≠
π
2
)的傾斜角為α.
其中正確命題的序號為
 

查看答案和解析>>

同步練習(xí)冊答案