【題目】在平面直角坐標系中,已知一個橢圓的中心在原點,左焦點為 ,且過D(2,0).
(1)求該橢圓的標準方程;
(2)若P是橢圓上的動點,點A(1,0),求線段PA中點M的軌跡方程.

【答案】
(1)解:由已知得橢圓的半長軸a=2,半焦距 ,則半短軸b= =1.

又橢圓的焦點在x軸上,

∴橢圓的標準方程為


(2)解:設線段PA的中點為M(x,y),點P的坐標是(x0,y0),

,得

∵點P在橢圓上,得

∴線段PA中點M的軌跡方程是


【解析】(1)由已知得橢圓的半長軸a=2,半焦距 ,則半短軸b= .即可得出.(2)設線段PA的中點為M(x,y),點P的坐標是(x0 , y0),利用中點坐標公式可得 ,即 由于點P在橢圓上,代入橢圓方程即可.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,正方形ADEF與梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD, ,

(1)當 時,求證:BM∥平面ADEF;
(2)若平面BDM與平面ABF所成銳角二面角的余弦值為 時,求λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,已知射線OA:x﹣y=0(x≥0),OB:2x+y=0(x≥0).過點P(1,0)作直線分別交射線OA,OB于點A,B.
(1)當AB的中點在直線x﹣2y=0上時,求直線AB的方程;
(2)當△AOB的面積取最小值時,求直線AB的方程.
(3)當PAPB取最小值時,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司為激勵創(chuàng)新,計劃逐年加大研發(fā)資金投入,若該公司2015年全年投入研發(fā)資金超過130萬元,在此基礎上,每年投入的研發(fā)資金比上一年增長12%,則該公司全年投入的研發(fā)資金開始超過200萬元的年份是年.(參考數(shù)據(jù):lg1.12≈0.05,lg1.3≈0.11,lg2≈0.30).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題p:方程 表示焦點在x軸上的橢圓,命題q:方程(k﹣1)x2+(k﹣3)y2=1表示雙曲線.若p∨q為真,p∧q為假,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=1+x﹣ + +…+ ;g(x)=1﹣x+ + ﹣…﹣ ;設函數(shù)F(x)=[f(x+3)]2015[g(x﹣4)]2016 , 且函數(shù)F(x)的零點均在區(qū)間[a,b](a<b,a,b∈Z)內,則b﹣a的最小值為(
A.8
B.9
C.10
D.11

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a>0,a≠1且loga3>loga2,若函數(shù)f(x)=logax在區(qū)間[a,2a]上的最大值與最小值之差為1.
(1)求a的值;
(2)解不等式 ;
(3)求函數(shù)g(x)=|logax﹣1|的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從某校高一年級1000名學生中隨機抽取100名測量身高,測量后發(fā)現(xiàn)被抽取的學生身高全部介于155厘米到195厘米之間,將測量結果分為八組:第一組[155,160),第二組[160,165),…,第八組[190,195),得到頻率分布直方圖如圖所示. (Ⅰ)計算第三組的樣本數(shù);并估計該校高一年級1000名學生中身高在170厘米以下的人數(shù);
(Ⅱ)估計被隨機抽取的這100名學生身高的中位數(shù)、平均數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= ,若方程f(x)=a有四個不同的解x1 , x2 , x3 , x4 , 且x1<x2<x3<x4 , 則x3(x1+x2)+ 的取值范圍為(
A.(﹣1,+∞)
B.(﹣1,1)
C.(﹣∞,1)
D.[﹣1,1]

查看答案和解析>>

同步練習冊答案