【題目】已知函數(shù)),為自然對(duì)數(shù)的底數(shù).

(Ⅰ)當(dāng)時(shí),求函數(shù)在區(qū)間上的最大值;

(Ⅱ)若函數(shù)只有一個(gè)零點(diǎn),求的值.

【答案】(Ⅰ);(Ⅱ)

【解析】試題分析:

(1)由導(dǎo)函數(shù)的解析式可得

(2),得,分類討論兩種情況可得

試題解析:

(Ⅰ)當(dāng)時(shí), , ,令,解得,

時(shí), 時(shí),

,而, ,

(Ⅱ), ,

,得,則

①當(dāng)時(shí), ,

極小值

所以當(dāng)時(shí), 有最小值,

因?yàn)楹瘮?shù)只有一個(gè)零點(diǎn),且當(dāng)時(shí),都有,則,即,

因?yàn)楫?dāng)時(shí), ,所以此方程無解.

②當(dāng)時(shí), ,

極小值

所以當(dāng)時(shí), 有最小值

因?yàn)楹瘮?shù)只有一個(gè)零點(diǎn),且當(dāng)時(shí),都有,

所以,即)(*)

設(shè),則

,得,

當(dāng)時(shí), ;當(dāng)時(shí), ;

所以當(dāng)時(shí), ,所以方程(*)有且只有一解

綜上, 時(shí)函數(shù)只有一個(gè)零點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)為奇函數(shù),且在(﹣∞,0)內(nèi)是減函數(shù),f(2)=0,則 <0的解集為(
A.(﹣2,0)∪(2,+∞)
B.(﹣∞,2)∪(0,2)
C.(﹣∞,﹣2)∪(2,+∞)
D.(﹣2,0)∪(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)= + 的定義域?yàn)椋?/span>
A.{x|x≥﹣3且x≠﹣2}
B.{x|x≥﹣3且x≠2}
C.{x|x≥﹣3}
D.{x|x≥﹣2且x≠3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=1+a( x+( x
(1)當(dāng)a=﹣2,x∈[1,2]時(shí),求函數(shù)f(x)的最大值與最小值;
(2)若函數(shù)f(x)在[1,+∞)上都有﹣2≤f(x)≤3,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).以原點(diǎn)為極點(diǎn), 軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.直線交曲線兩點(diǎn).

(1)寫出直線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

(2)設(shè)點(diǎn)的直角坐標(biāo)為,求點(diǎn)兩點(diǎn)的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A={x|﹣1<x<2},B={x|log2x>0}.
(1)求A∩B和A∪B;
(2)定義A﹣B={x|x∈A且xB},求A﹣B和B﹣A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的偶函數(shù)f(x)滿足f(x+1)=﹣f(x),且當(dāng)x∈[﹣1,0)時(shí)f(x)=( x , 則 f(log28)等于(
A.3
B.
C.﹣2
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(sinx+cosx)2+cos2x
(1)求f(x)最小正周期;
(2)求f(x)在區(qū)間[ ]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,ABCD是平行四邊形,M,N分別是AB,PC的中點(diǎn),求證:MN∥平面PAD.

查看答案和解析>>

同步練習(xí)冊(cè)答案