【題目】已知函數f(x)=ax2+ax﹣1(a∈R).
(Ⅰ)當a=1時,求f(x)>0的解集;
(Ⅱ)對于任意x∈R,不等式f(x)<0恒成立,求a的取值范圍;
(Ⅲ)求關于x的不等式f(x)<0的解集.
【答案】(Ⅰ){x|x或x};(Ⅱ)(﹣4,0];(Ⅲ)答案不唯一,詳見解析.
【解析】
(Ⅰ)將a=1代入,解一元二次不等式即可求解.
(Ⅱ)討論a=0或,根據二次函數的圖象與性質即可求解.
(Ⅲ)討論的取值,根據含參的一元二次不等式的解法即可求解.
(Ⅰ)當a=1時,f(x)=x2+x﹣1>0,
解得x或x.
∴f(x)>0的解集為{x|x或x}.
(Ⅱ)∵f(x)=ax2+ax﹣1(a∈R).
對于任意x∈R,不等式f(x)<0恒成立,
∴a=0或,
解得﹣4<a≤0,
∴a的取值范圍是(﹣4,0].
(Ⅲ)(i)a=0時,f(x)=﹣1<0,
不等式的解集是R,
(ii)a>0時,f(x)=ax2+ax﹣1,
△=a2+4a>0,令f′(x)=0,
解得:x,
故f(x)<0的解集是:(,),
(iii)a<0時,△=a2+4a,
①a<﹣4時,△>0,
令f(x)=0,解得:x,
故f(x)<0的解集是:(﹣∞,)∪(,+∞),
②a=﹣4時,△=0,f(x)<0的解集是{x|x},
③﹣4<a<0時,△<0,
f(x)<0的解集是R.
科目:高中數學 來源: 題型:
【題目】已知橢圓:的離心率為,直線被圓截得的弦長為.
(1)求橢圓的方程;
(2)過點的直線交橢圓于,兩點,在軸上是否存在定點,使得為定值?若存在,求出點的坐標和的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】雙曲線 的左、右焦點分別為,過作傾斜角為的直線與軸和雙曲線的右支分別交于兩點,若點平分線段,則該雙曲線的離心率是( )
A. B. C. 2 D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,三棱柱ABC﹣A1B1C1的側棱垂直于底面,且底面是邊長為2的正三角形,AA1=3,點D,E,F,G分別是所在棱的中點.
(Ⅰ)證明:平面BEF∥平面DA1C1;
(Ⅱ)求三棱柱ABC﹣A1B1C1夾在平面BEF和平面DA1C1之間的部分的體積.
附:臺體的體積,其中S和S′分別是上、下底面面積,h是臺體的高.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】空氣質量指數(Air Quality Index,簡稱AQI)是定量描述空氣質量狀況的指數,空氣質量按照AQI大小分為六級,0~50為優(yōu);51~100為良;101~150為輕度污染;151~200為中度污染;201~300為重度污染;大于300為嚴重污染.某環(huán)保人士從當地某年的AQI記錄數據中,隨機抽取了15天的AQI數據,用如圖所示的莖葉圖記錄.根據該統(tǒng)計數據,估計此地該年空氣質量為優(yōu)或良的天數約為__________.(該年為366天)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一個工廠在某年連續(xù)10個月每月產品的總成本y(萬元)與該月產量x(萬件)之間有如下一組數據:
x | 1.08 | 1.12 | 1.19 | 1.28 | 1.36 | 1.48 | 1.59 | 1.68 | 1.80 | 1.87 |
y | 2.25 | 2.37 | 2.40 | 2.55 | 2.64 | 2.75 | 2.92 | 3.03 | 3.14 | 3.26 |
(1)通過畫散點圖,發(fā)現可用線性回歸模型擬合y與x的關系,請用相關系數加以說明;
(2)①建立月總成本y與月產量x之間的回歸方程;
②通過建立的y關于x的回歸方程,估計某月產量為1.98萬件時,此時產品的總成本為多少萬元?
(均精確到0.001)
附注:①參考數據:,
,
②參考公式:相關系數,
回歸方程中斜率和截距的最小二乘估計公式分別為:.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com