【題目】已知集合A={x| >0},集合B={x|y=lg(﹣x2+3x+28)},集合C={x|m+1≤x≤2m﹣1}.
(1)求(RA)∩B;
(2)若B∪C=B,求實(shí)數(shù)m的取值范圍.
【答案】
(1)解:集合A={x| >0}={x|x>7或x<﹣2},
B={x|y=lg(﹣x2+3x+28)}={x|﹣4<x<7},
所以RA={x|﹣2≤x≤7}
所以(RA)∩B=[﹣2,7)
(2)解:因?yàn)锽∪C=B,所以CB
①當(dāng)C=時(shí),m+1>2m﹣1,即m<2,此時(shí)BA
②當(dāng)C≠時(shí), ,即2≤m<4,此時(shí)BA
綜上所述,m的取值范圍是{m|m<4}
【解析】(1)利用分式不等式的解法求出集合A,函數(shù)的定義域求出集合B,求出A的補(bǔ)集,即可求解結(jié)果.(2)利用并集關(guān)系,轉(zhuǎn)化為子集關(guān)系,求解m即可.
【考點(diǎn)精析】利用交、并、補(bǔ)集的混合運(yùn)算對題目進(jìn)行判斷即可得到答案,需要熟知求集合的并、交、補(bǔ)是集合間的基本運(yùn)算,運(yùn)算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時(shí),常常從這兩個字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語言表達(dá),增強(qiáng)數(shù)形結(jié)合的思想方法.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高級中學(xué)共有學(xué)生2000名,各年級男、女生人數(shù)如表:
已知在全校學(xué)生中隨機(jī)抽取1名,抽到高二年級女生的概率是0.19.
(1)求的值;
(2)現(xiàn)用分層抽樣的方法在全校抽取48名學(xué)生,問應(yīng)該在高三年級抽取多少名?
(3)已知,求高三年級中女生比男生多的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓()的離心率是,過點(diǎn)的動直線與橢圓相交于, 兩點(diǎn),當(dāng)直線平行于軸時(shí),直線被橢圓截得的線段長為.
(1)求橢圓的方程;
(2)當(dāng)時(shí),求直線的方程;
(3)記橢圓的右頂點(diǎn)為,點(diǎn)()在橢圓上,直線交軸于點(diǎn),點(diǎn)與點(diǎn)關(guān)于軸對稱,直線交軸于點(diǎn).問: 軸上是否存在點(diǎn),使得(為坐標(biāo)原點(diǎn))?若存在,求點(diǎn)坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: ,雙曲線: ,若以的長軸為直徑的圓與的一條漸近線交于A、B兩點(diǎn),且橢圓與該漸近線的兩交點(diǎn)將線段AB三等分,則的離心率是( )
A. B. 3 C. D. 5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體中,E、F分別是、CD的中點(diǎn),(1)證明: ;(2)求異面直線與所成的角;(3)證明:平面平面。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=a﹣ 為奇函數(shù).
(1)求a的值;
(2)試判斷函數(shù)f(x)在(﹣∞,+∞)上的單調(diào)性,并證明你的結(jié)論;
(3)若對任意的t∈R,不等式f[t2﹣(m﹣2)t]+f(t2﹣m+1)>0恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P-ABCD的底面ABCD是平行四邊形,BA=BD=,AD=2,PA=PD=,E,F(xiàn)分別是棱AD,PC的中點(diǎn).
(1)證明:EF∥平面PAB;
(2)若二面角P-AD-B為60°.
①證明:平面PBC⊥平面ABCD;
②求直線EF與平面PBC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:x∈R,kx2+1≤0,命題q:x∈R,x2+2kx+1>0.
(1)當(dāng)k=3時(shí),寫出命題p的否定,并判斷真假;
(2)當(dāng)p∨q為假命題時(shí),求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的一個焦點(diǎn)為,其左頂點(diǎn)在圓上.
(Ⅰ)求橢圓的方程;
(Ⅱ)直線交橢圓于兩點(diǎn),設(shè)點(diǎn)關(guān)于軸的對稱點(diǎn)為(點(diǎn)與點(diǎn)不重合),且直線與軸的交于點(diǎn),試問的面積是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com