【題目】已知橢圓)的離心率是,過點的動直線與橢圓相交于, 兩點,當直線平行于軸時,直線被橢圓截得的線段長為

(1)求橢圓的方程;

(2)當時,求直線的方程;

(3)記橢圓的右頂點為,點)在橢圓上,直線軸于點,點與點關(guān)于軸對稱,直線軸于點.問: 軸上是否存在點,使得為坐標原點)?若存在,求點坐標;若不存在,說明理由.

【答案】(1)(2)(3)點的坐標為

【解析】試題分析:

(1)由題意求得則橢圓的方程為;

(2)很明顯直線的斜率存在,利用弦長公式得到關(guān)于斜率k的方程,解方程可得的方程為

(3) 假設軸上存在點,使得,原問題等價于滿足,據(jù)此整理計算可得點的坐標為

試題解析:

解:(1)由已知,點在橢圓上,

因此解得

所以橢圓的方程為. 

2)依題意,直線的斜率必存在,設的方程為, , ,

,

,

,

整理得,即,

的方程為

3)假設軸上存在點,使得

存在點使得等價于存在點使得

滿足

因為,所以,

直線的方程為,

所以,即

因為點與點關(guān)于軸對稱,所以

同理可得,

因為 ,

所以,

所以

故在軸上存在點,使得,點的坐標為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線的焦點為,直線且依次交拋物線及圓于點四點,則的最小值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題p:方程表示焦點在x軸上的橢圓;命題q:雙曲線的離心率e.若命題“pq”為真命題,“pq”為假命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)f(x)=x2﹣ax+3,且對任意的實數(shù)x都有f(4﹣x)=f(x)成立.
(1)求實數(shù)a的值;
(2)求函數(shù)f(x)在區(qū)間[0,3]上的值域;
(3)要得到函數(shù)y=x2的圖象只需要將二次函數(shù)y=f(x)的圖象做怎樣的變換得到.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)f(x)滿足f(x+1)﹣f(x)=2x(x∈R),且f(0)=1,
(1)求f(x)的解析式;
(2)當x∈[﹣1,1]時,求函數(shù)g(x)=f(x)﹣2x的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax2﹣x+2a﹣1(a>0).
(1)若f(x)在區(qū)間[1,2]為單調(diào)增函數(shù),求a的取值范圍;
(2)設函數(shù)f(x)在區(qū)間[1,2]上的最小值為g(a),求g(a)的表達式;
(3)設函數(shù) ,若對任意x1 , x2∈[1,2],不等式f(x1)≥h(x2)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】銷售甲、乙兩種商品所得利潤分別是P(單位:萬元)和Q(單位:萬元),它們與投入資金t(單位:萬元)的關(guān)系有經(jīng)驗公式P= t,Q= .今將3萬元資金投入經(jīng)營甲、乙兩種商品,其中對甲種商品投資x(單位:萬元),
(1)試建立總利潤y(單位:萬元)關(guān)于x的函數(shù)關(guān)系式;
(2)當對甲種商品投資x(單位:萬元)為多少時?總利潤y(單位:萬元)值最大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x| >0},集合B={x|y=lg(﹣x2+3x+28)},集合C={x|m+1≤x≤2m﹣1}.
(1)求(RA)∩B;
(2)若B∪C=B,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)有相同的極值點.

(I)求函數(shù)的解析式;

(II)證明:不等式(其中e為自然對數(shù)的底數(shù));

(III)不等式對任意恒成立,求實數(shù)的取值范圍。

查看答案和解析>>

同步練習冊答案