科目: 來源: 題型:解答題
設(shè)f(x)和g(x)都是定義在同一區(qū)間上的兩個函數(shù),若對任意x∈[1,2],都有|f(x)+g(x)|≤8,則稱f(x)和g(x)是“友好函數(shù)”,設(shè)f(x)=ax,g(x)=.
(1)若a∈{1,4},b∈{-1,1,4},求f(x)和g(x)是“友好函數(shù)”的概率;
(2)若a∈[1,4],b∈[1,4],求f(x)和g(x)是“友好函數(shù)”的概率.
查看答案和解析>>
科目: 來源: 題型:解答題
設(shè)函數(shù)f(x)=ax2+bx+c,且f(1)=-,3a>2c>2b,求證:
(1)a>0,且-3<<-;
(2)函數(shù)f(x)在區(qū)間(0,2)內(nèi)至少有一個零點;
(3)設(shè)x1,x2是函數(shù)f(x)的兩個零點,則≤|x1-x2|<.
查看答案和解析>>
科目: 來源: 題型:解答題
已知函數(shù)f(x)=.
(1)求函數(shù)f(x)的最小值;
(2)已知m∈R,命題p:關(guān)于x的不等式f(x)≥m2+2m-2對任意m∈R恒成立;q:函數(shù)y=(m2-1)x是增函數(shù).若“p或q”為真,“p且q”為假,求實數(shù)m的取值范圍.
查看答案和解析>>
科目: 來源: 題型:解答題
已知兩函數(shù)f(x)=8x2+16x-k,g(x)=2x3+5x2+4x,其中k為實數(shù).
(1)對任意x∈[-3,3]都有f(x)≤g(x)成立,求k的取值范圍.
(2)存在x∈[-3,3]使f(x)≤g(x)成立,求k的取值范圍.
(3)對任意x1,x2∈[-3,3]都有f(x1)≤g(x2),求k的取值范圍.
查看答案和解析>>
科目: 來源: 題型:解答題
某投資公司投資甲、乙兩個項目所獲得的利潤分別是P(億元)和Q(億元),它們與投資額t(億元)的關(guān)系有經(jīng)驗公式P=,Q=t,今該公司將5億元投資于這兩個項目,其中對甲項目投資x(億元),投資這兩個項目所獲得的總利潤為y(億元).求:
(1)y關(guān)于x的函數(shù)表達式.
(2)總利潤的最大值.
查看答案和解析>>
科目: 來源: 題型:解答題
為了保護環(huán)境,發(fā)展低碳經(jīng)濟,某單位在國家科研部門的支持下,進行技術(shù)攻關(guān),新上了把二氧化碳處理轉(zhuǎn)化為一種可利用的化工產(chǎn)品的項目,經(jīng)測算,該項目月處理成本y(元)與月處理量x(噸)之間的函數(shù)關(guān)系可近似地表示為
y=
且每處理一噸二氧化碳得到可利用的化工產(chǎn)品價值為200元,若該項目不獲利,國家將給予補償.
(1)當x∈[200,300]時,判斷該項目能否獲利?如果獲利,求出最大利潤;如果不獲利,則國家每月至少需要補貼多少元才能使該項目不虧損?
(2)該項目每月處理量為多少噸時,才能使每噸的平均處理成本最低?
查看答案和解析>>
科目: 來源: 題型:解答題
某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)x千件,需另投入成本為C(x),當年產(chǎn)量不足80千件時,C(x)=x2+10x(萬元).當年產(chǎn)量不小于80千件時,C(x)=51x+-1450(萬元).每件商品售價為0.05萬元.通過市場分析,該廠生產(chǎn)的商品能全部售完.
(1)寫出年利潤L(x)(萬元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式.
(2)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?
查看答案和解析>>
科目: 來源: 題型:解答題
已知某物體的溫度θ(單位:攝氏度)隨時間t(單位:分鐘)的變化規(guī)律是:θ=m·2t+21-t(t≥0,且m>0).
(1)如果m=2,求經(jīng)過多少時間,物體的溫度為5攝氏度.
(2)若物體的溫度總不低于2攝氏度,求m的取值范圍.
查看答案和解析>>
科目: 來源: 題型:解答題
有一種新型的洗衣液,去污速度特別快.已知每投放k(1≤k≤4,且k∈R)個單位的洗衣液在一定量水的洗衣機中,它在水中釋放的濃度y(克/升)隨著時間x(分鐘)變化的函數(shù)關(guān)系式近似為y=k·f(x),其中f(x)=若多次投放,則某一時刻水中的洗衣液濃度為每次投放的洗衣液在相應(yīng)時刻所釋放的濃度之和.根據(jù)經(jīng)驗,當水中洗衣液的濃度不低于4(克/升)時,它才能起到有效去污的作用.
(1)若只投放一次k個單位的洗衣液,兩分鐘時水中洗衣液的濃度為3(克/升),求k的值;
(2)若只投放一次4個單位的洗衣液,則有效去污時間可達幾分鐘?
查看答案和解析>>
科目: 來源: 題型:解答題
設(shè)函數(shù)f(x)=ax2+bx+b-1(a≠0).
(1)當a=1,b=-2時,求函數(shù)f(x)的零點;
(2)若對任意b∈R,函數(shù)f(x)恒有兩個不同零點,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com