科目: 來源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測試解答題保分訓(xùn)練練習(xí)卷(解析版) 題型:解答題
在四棱錐P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC與BD的交點M恰好是AC的中點,又∠CAD=30°,PA=AB=4,點N在線段PB上,且=.
(1)求證:BD⊥PC;
(2)求證:MN∥平面PDC;
(3)設(shè)平面PAB∩平面PCD=l,試問直線l是否與直線CD平行,請說明理由.
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測試解答題保分訓(xùn)練練習(xí)卷(解析版) 題型:解答題
已知數(shù)列{an}的相鄰兩項an,an+1是關(guān)于x的方程x2-2nx+bn=0的兩根,且a1=1.
(1)求證:數(shù)列是等比數(shù)列;
(2)求數(shù)列{an}的前n項和Sn;
(3)設(shè)函數(shù)f(n)=bn-t·Sn(n∈N*),若f(n)>0對任意的n∈N*都成立,求t的取值范圍.
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測試解答題保分訓(xùn)練練習(xí)卷(解析版) 題型:解答題
某校從高一年級學(xué)生中隨機抽取40名學(xué)生,將他們的期中考試數(shù)學(xué)成績(滿分100分,成績均為不低于40分的整數(shù))分成六段:[40,50),[50,60),…,[90,100]后得到如圖所示的頻率分布直方圖.
(1)求圖中實數(shù)a的值;
(2)若該校高一年級共有學(xué)生640人,試估計該校高一年級期中考試數(shù)學(xué)成績不低于60分的人數(shù);
(3)若從數(shù)學(xué)成績在[40,50)與[90,100]兩個分數(shù)段內(nèi)的學(xué)生中隨機選取2名學(xué)生,求這2名學(xué)生的數(shù)學(xué)成績之差的絕對值不大于10的概率.
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測試解答題保分訓(xùn)練練習(xí)卷(解析版) 題型:解答題
已知m=(2cos x+2sin x,1),n=(cos x,-y),且m⊥n.
(1)將y表示為x的函數(shù)f(x),并求f(x)的單調(diào)遞增區(qū)間;
(2)已知a,b,c分別為△ABC的三個內(nèi)角A,B,C對應(yīng)的邊長,若f=3,且a=2,b+c=4,求△ABC的面積.
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測試解答題保分訓(xùn)練練習(xí)卷(解析版) 題型:解答題
如圖,在幾何體ABCDE中,AB=AD=2,AB⊥AD,AE⊥平面ABD,M為線段BD的中點,MC∥AE,且AE=MC=.
(1)求證:平面BCD⊥平面CDE;
(2)若N為線段DE的中點,求證:平面AMN∥平面BEC.
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測試解答題保分訓(xùn)練練習(xí)卷(解析版) 題型:解答題
設(shè)角A,B,C為△ABC的三個內(nèi)角.
(1)設(shè)f(A)=sin A+2sin ,當(dāng)A取A0時,f(A)取極大值f(A0),試求A0和f(A0)的值;
(2)當(dāng)A取A0時,·=-1,求BC邊長的最小值.
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測試解答題保分訓(xùn)練練習(xí)卷(解析版) 題型:解答題
已知四棱錐P-ABCD的正視圖是一個底邊長為4,腰長為3的等腰三角形,如圖分別是四棱錐P-ABCD的側(cè)視圖和俯視圖.
(1)求證:AD⊥PC;
(2)求四棱錐P-ABCD的側(cè)面PAB的面積.
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測試解答題搶分訓(xùn)練練習(xí)卷(解析版) 題型:解答題
設(shè)L為曲線C:y=在點(1,0)處的切線.
(1)求L的方程;
(2)證明:除切點(1,0)之外,曲線C在直線L的下方.
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測試解答題搶分訓(xùn)練練習(xí)卷(解析版) 題型:解答題
在平面直角坐標系xOy中,O為坐標原點,A(-2,0),B(2,0),點P為動點,且直線AP與直線BP的斜率之積為-.
(1)求動點P的軌跡C的方程;
(2)過點D(1,0)的直線l交軌跡C于不同的兩點M,N,△MON的面積是否存在最大值?若存在,求出△MON的面積的最大值及相應(yīng)的直線方程;若不存在,請說明理由.
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測試解答題搶分訓(xùn)練練習(xí)卷(解析版) 題型:解答題
已知函數(shù)f(x)=(ax2-2x+a)·e-x.
(1)當(dāng)a=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)g(x)=--a-2,h(x)=x2-2x-ln x,若x>1時總有g(x)<h(x),求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com