相關(guān)習(xí)題
 0  206117  206125  206131  206135  206141  206143  206147  206153  206155  206161  206167  206171  206173  206177  206183  206185  206191  206195  206197  206201  206203  206207  206209  206211  206212  206213  206215  206216  206217  206219  206221  206225  206227  206231  206233  206237  206243  206245  206251  206255  206257  206261  206267  206273  206275  206281  206285  206287  206293  206297  206303  206311  266669 

科目: 來(lái)源: 題型:

函數(shù)y=x+
4
x
的單調(diào)減區(qū)間為( 。
A、(-2,0)及(0,2)
B、(-2,0)∪(0,2)
C、(0,2)及(-∞,-2)
D、(-2,2)

查看答案和解析>>

科目: 來(lái)源: 題型:

奇函數(shù)f(x)在(0,+∞)上的解析式是f(x)=x(1-x),則f(x)的函數(shù)解析式是
 

查看答案和解析>>

科目: 來(lái)源: 題型:

已知:二次函數(shù)y=-2x2+5x+12,求:
(1)拋物線的開(kāi)口方向、對(duì)稱(chēng)軸、頂點(diǎn)坐標(biāo);
(2)當(dāng)y=0,y>0,y<0時(shí),對(duì)應(yīng)的x的取值范圍;
(3)當(dāng)y>15時(shí),x的范圍;
(4)當(dāng)x∈[0,2]時(shí),y的最大值和最小值;
(5)當(dāng)x∈[3,4]時(shí),y的最大值.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知函數(shù)f(x)=ax2+bx+c(a>0,b,c∈R),F(xiàn)(x)=
f(x),x≥0
-f(-x),x<0

(1)若f(x)的最小值為f(-1)=0,且f(0)=1,求F(-1)+f(2)的值;
(2)若a=1,c=0,且|f(x)|≤1對(duì)x∈[0,1]恒成立,求b的取值范圍;
(3)若a=1,b=-2,c=0,且y=F(x)與y=-t的圖象在閉區(qū)間[-2,t]上恰有一個(gè)公共點(diǎn),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知f(x)=
m
x+1
+nlnx(m,n為常數(shù))在x=1處的切線方程為x+y-2=0.
(1)求y=f(x)的單調(diào)區(qū)間;
(2)若任意實(shí)數(shù)x∈[
1
e
,1],使得對(duì)任意的t∈[
1
2
,2]上恒有f(x)≥t3-t2-2at+2成立,求實(shí)數(shù)a的取值范圍;
(3)求證:對(duì)任意正整數(shù)n,有4(
1
2
+
2
3
+…+
n
n+1
)+(ln1+ln2+…+lnn)≥2n.

查看答案和解析>>

科目: 來(lái)源: 題型:

設(shè)g(x)=ex,f(x)=g[λx+(1-λ)a]-λg(x),其中a,λ是常數(shù),且0<λ<1.
(1)求函數(shù)f(x)的最值;
(2)證明:對(duì)任意正數(shù)a,存在正數(shù)x,使不等式|
g(x)-1
x
-1|<a成立;
(3)設(shè)λ1>0,λ2>0,且λ12=1,證明:對(duì)任意正數(shù)a1a2都有a1 λ1a2 λ2≤λ1a12a2

查看答案和解析>>

科目: 來(lái)源: 題型:

已知集合A={x|x>1},B={x|2m-1≤x≤m+3},若B⊆A,則m的取值范圍是
 

查看答案和解析>>

科目: 來(lái)源: 題型:

已知函數(shù)f(x)=x2-6x+4lnx+a(x>0),若方程f(x)=0有兩個(gè)不同的實(shí)根,則實(shí)數(shù)a的值為( 。
A、a=5或a=8-4ln2
B、a=5或a=8+4ln2
C、a=-5或a=8-4ln2
D、a=5或a=8-4ln3

查看答案和解析>>

科目: 來(lái)源: 題型:

若函數(shù)f(x)=x+
1
x-3
(x>3),則f(x)的最小值為( 。
A、3B、4C、5D、6

查看答案和解析>>

科目: 來(lái)源: 題型:

數(shù)列{an}滿足a1=
1
3
,
1
an+1
-
1
an
=5(n∈N+),則a10=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案