相關(guān)習(xí)題
 0  208346  208354  208360  208364  208370  208372  208376  208382  208384  208390  208396  208400  208402  208406  208412  208414  208420  208424  208426  208430  208432  208436  208438  208440  208441  208442  208444  208445  208446  208448  208450  208454  208456  208460  208462  208466  208472  208474  208480  208484  208486  208490  208496  208502  208504  208510  208514  208516  208522  208526  208532  208540  266669 

科目: 來源: 題型:

在平面直角坐標(biāo)系xOy上的區(qū)域D由不等式組
x-y-2≤0
x+2y-4≥0
2y-3≤0
給定.若M(x,y)為D上的動(dòng)點(diǎn),點(diǎn)N的坐標(biāo)為(1,3),則z=
OM
ON
的最小值為
 

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=ln(ex+a+1)(a為常數(shù))是實(shí)數(shù)集R上的奇函數(shù),函數(shù)g(x)=λf(x)+sinx在區(qū)間[-1,1]上是減函數(shù).
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)若g(x)≤λt-1在x∈[-1,1]上恒成立,求實(shí)數(shù)t的最大值;
(Ⅲ)若關(guān)于x的方程
lnx
f(x)
=x2-2ex+m有且只有一個(gè)實(shí)數(shù)根,求m的值.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=
a•3x+a-2
3x+1
,函數(shù)f(x)為奇函數(shù).
(1)求實(shí)數(shù)a的值;
(2)判斷f(x)的單調(diào)性,并用定義證明.
(3)若解不等式f(x+2)+f(x-3)<0.

查看答案和解析>>

科目: 來源: 題型:

函數(shù)f(x)=
1
3
x3-4x+4.
(Ⅰ)求函數(shù)f(x)的極值;
(Ⅱ)設(shè)函數(shù)g(x)=x+m,對(duì)?x1,x2∈[0,3],都有f(x1)≥g(x2),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=x-a(x+1)ln(x+1).
(Ⅰ)當(dāng)a>0時(shí),求f(x)的極值點(diǎn);
(Ⅱ)當(dāng)a=1時(shí),若方程f(x)=t在[-
1
2
,1]上有兩個(gè)實(shí)數(shù)解,求實(shí)數(shù)t的取值范圍;
(Ⅲ)證明:當(dāng)m>n>0時(shí),(1+m)n<(1+n)m

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=-|x|+1,若關(guān)于x的方程f2(x)+(2m-1)f(x)+4-2m=0有4個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍(  )

查看答案和解析>>

科目: 來源: 題型:

設(shè)平面向量
am
=(m,1),
bn
=(2,n),其中m,n∈{1,2,3,4}.
(1)請(qǐng)列出有序數(shù)組(m,n)的所有可能結(jié)果;
(2)若“使得
am
⊥(
am
-
bn
)成立的(m,n)”為事件A,求事件A發(fā)生的概率.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=
a
x
+lnx(a∈R).
(Ⅰ)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)在(Ⅰ)的條件下求函數(shù)f(x)+2x的極值;
(Ⅲ)若f(x)<
1
2
x在x∈(1,+∞)時(shí)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=-2sin2x-2mcosx+1-2m(m∈R)的最小值為h(m).
(1)求證:不論m為任何實(shí)數(shù),函數(shù)f(x)的圖象總經(jīng)過定點(diǎn);
(2)若h(m)=
1
2
,求m的值.

查看答案和解析>>

科目: 來源: 題型:

對(duì)于任意的正實(shí)數(shù)a,已知關(guān)于x的方程xex=a的解存在.
(1)證明:該方程的解唯一;
(2)若將該方程的解記為Iwa,則我們可以用符號(hào)“Iw”來表示一些方程的解,例如方程(2x+1)•e2x+1=3的解為
-1+Iw3
2
.試解方程2x=-7x.

查看答案和解析>>

同步練習(xí)冊(cè)答案