相關(guān)習(xí)題
 0  210065  210073  210079  210083  210089  210091  210095  210101  210103  210109  210115  210119  210121  210125  210131  210133  210139  210143  210145  210149  210151  210155  210157  210159  210160  210161  210163  210164  210165  210167  210169  210173  210175  210179  210181  210185  210191  210193  210199  210203  210205  210209  210215  210221  210223  210229  210233  210235  210241  210245  210251  210259  266669 

科目: 來源: 題型:

已知函數(shù)f(x)=sin2x-2a(sinx+cosx)+a2
(1)當(dāng)a=2時,求函數(shù)f(x)的最小值;
(2)若函數(shù)f(x)的最小值為g(a),無論a為何值g(a)≥m恒成立,求m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

我市某高中的一個綜合實踐研究小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
日    期 1月10日 2月10日 3月10日 4月10日 5月10日 6月10日
晝夜溫差x(°C) 10 11 13 12 8 6
就診人數(shù)y(個) 22 25 29 26 16 12
該綜合實踐研究小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.
(1)若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出y關(guān)于x的線性回歸方程
y
=bx+a.
(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?
參考數(shù)據(jù):
4
i=1
xi2=112+132+122+82=498;
4
i=1
xiyi11×25+13×29+12×26+8×16=1092.

查看答案和解析>>

科目: 來源: 題型:

已知B,C是兩個定點,|BC|=6,且△ABC的周長等于16,求頂點A的軌跡方程.

查看答案和解析>>

科目: 來源: 題型:

如圖,將邊長為2,有一個銳角為60°的菱形ABCD,沿著較短的對角線BD對折,使得AC=
6
,O為BD的中點.
(Ⅰ)求證:AO⊥平面BCD
(Ⅱ)求三棱錐A-BCD的體積;
(Ⅲ)求二面角A-BC-D的余弦值.

查看答案和解析>>

科目: 來源: 題型:

(1)求證:當(dāng)a、b、c為正數(shù)時,(a+b+c)(
1
a
+
1
b
+
1
c
)≥9
(2)已知x>0,y>0,證明不等式:(x2+y2 
1
2
>(x3+y3 
1
3

查看答案和解析>>

科目: 來源: 題型:

在極坐標(biāo)系中,動點P(ρ,θ)運動時,ρ與sin2(
θ
2
+
π
4
)
成反比,動點P的軌跡經(jīng)過點(2,0)
(I)求動點P的軌跡其極坐標(biāo)方程.
(II)以極點為直角坐標(biāo)系原點,極軸為x軸正半軸建立直角坐標(biāo)系,將(I)中極坐標(biāo)方程化為直角坐標(biāo)方程,并說明所得點P軌跡是何種曲線.

查看答案和解析>>

科目: 來源: 題型:

解關(guān)于x的不等式
(1)
3x-5
x2+2x-3
≤2;                  
(2)x2-ax-2a2<0.

查看答案和解析>>

科目: 來源: 題型:

如圖,正方體ABCD-A1B1C1D1
(1)求證:平面ACC1A1⊥平面A1BD;
(2)求二面角A-A1B-D的余弦值.

查看答案和解析>>

科目: 來源: 題型:

計算:
(1)(x2-
2
x+
1
3
2
(2)(x2+3xm)(9x2m-3xm+2+x4
(3)(a+b)[(a-b)2+ab]-(a-b)[(a+b)2-ab].

查看答案和解析>>

科目: 來源: 題型:

如圖,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=4,DE=2AB=3,且F是CD的中點.
(1)求證:AF∥平面BCE;
(2)在線段CE上是否存在點H,使DH⊥平面BCE?若存在,求出
CH
HE
的值,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案