相關(guān)習(xí)題
 0  212411  212419  212425  212429  212435  212437  212441  212447  212449  212455  212461  212465  212467  212471  212477  212479  212485  212489  212491  212495  212497  212501  212503  212505  212506  212507  212509  212510  212511  212513  212515  212519  212521  212525  212527  212531  212537  212539  212545  212549  212551  212555  212561  212567  212569  212575  212579  212581  212587  212591  212597  212605  266669 

科目: 來源: 題型:

已知數(shù)列{an}是首項(xiàng)和公比均為
1
4
的等比數(shù)列,設(shè)bn+2=3log 
1
4
an(n∈N*).?dāng)?shù)列{cn}滿足cn=an•bn
(Ⅰ)求證數(shù)列{bn}是等差數(shù)列;
(Ⅱ)求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目: 來源: 題型:

求函數(shù)y=cos2x-2cosx+1值域.

查看答案和解析>>

科目: 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知B(1,0),∠AOB=120°,|
OA
|=2,|
BD
|=2|
DA
|,求
OD
AB
的值.

查看答案和解析>>

科目: 來源: 題型:

設(shè)f(x)=ex(ax2+x+1),且曲線y=f(x)在x=1處的切線與x軸平行.
(Ⅰ)求a的值,并求f(x)的極值;
(Ⅱ)k(k∈R)如何取值時(shí),函數(shù)y=f(x)+kx2ex存在零點(diǎn),并求出零點(diǎn).

查看答案和解析>>

科目: 來源: 題型:

如圖1,橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)分別為F1F2,左、右頂點(diǎn)分別為A1,A2,T(1,
3
2
)為橢圓上一點(diǎn),且TF2垂直于x軸.

(Ⅰ)求橢圓E的方程;
(Ⅱ)給出命題:“已知P是橢圓E上異于A1,A2的一點(diǎn),直線 A1P,A2P分別交直線l:x=t(t為常數(shù))于不同兩點(diǎn)M,N,點(diǎn)Q在直線l上.若直線PQ與橢圓E有且只有一個(gè)公共點(diǎn)P,則Q為線段MN的中點(diǎn)”,寫出此命題的逆命題,判斷你所寫出的命題的真假,并加以證明;
(Ⅲ)試研究(Ⅱ)的結(jié)論,根據(jù)你的研究心得,在圖2中作出與該雙曲線有且只有一個(gè)公共點(diǎn)S的直線m,并寫出作圖步驟.注意:所作的直線不能與雙曲線的漸近線平行.

查看答案和解析>>

科目: 來源: 題型:

以下判斷正確的是(  )
A、函數(shù)y=f(x)為R上的可導(dǎo)函數(shù),則“f′(x0)=0”是“x0為函數(shù)f(x)極值點(diǎn)”的充要條件
B、“a=1”是“直線ax+y-1=0與直線x+ay+1=0平行”的充要條件
C、命題“在△ABC中,若A>B,則sinA>sinB”的逆命題為假命題
D、命題“存在x∈R,x2+x-1<0”的否定是“任意x∈R,x2+x-1>0”

查看答案和解析>>

科目: 來源: 題型:

已知點(diǎn)P(3,4)和圓C:(x-2)2+y2=4,A,B是圓C上兩個(gè)動(dòng)點(diǎn),且|AB|=2
3
,則
OP
•(
OA
+
OB
)(O為坐標(biāo)原點(diǎn))的取值范圍是( 。
A、[3,9]
B、[1,11]
C、[6,18]
D、[2,22]

查看答案和解析>>

科目: 來源: 題型:

下列各式中,函數(shù)的個(gè)數(shù)是( 。
①y=1;②y=x2;③y=1-x;④y=
x-2
+
1-x
A、4B、3C、2D、1

查看答案和解析>>

科目: 來源: 題型:

已知x,y滿足
y-2≤0
x+3≥0
x-y-1≤0
,則
x+y-6
x-4
的取值范圍是(  )
A、[0,
3
7
]
B、[0,
6
7
]
C、[1,
13
7
]
D、[2,
20
7
]

查看答案和解析>>

科目: 來源: 題型:

如圖所示圖形中是四棱錐三視圖的是( 。
A、
B、
C、
D、

查看答案和解析>>

同步練習(xí)冊答案