相關(guān)習(xí)題
 0  212522  212530  212536  212540  212546  212548  212552  212558  212560  212566  212572  212576  212578  212582  212588  212590  212596  212600  212602  212606  212608  212612  212614  212616  212617  212618  212620  212621  212622  212624  212626  212630  212632  212636  212638  212642  212648  212650  212656  212660  212662  212666  212672  212678  212680  212686  212690  212692  212698  212702  212708  212716  266669 

科目: 來源: 題型:

閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,輸出的s值等于( 。
A、-3B、-21C、3D、21

查看答案和解析>>

科目: 來源: 題型:

正三角形ABC中,D是邊BC上的點(diǎn),若AB=3,BD=1,則
AB
AD
=( 。
A、
21
2
B、
15
2
C、
13
2
D、
9
2

查看答案和解析>>

科目: 來源: 題型:

在直角坐標(biāo)系中,定義兩點(diǎn)P(x1,y1),Q(x2,y2)之間的“直角距離”為d(P,Q)=|x1-x2|+|y1-y2|.現(xiàn)有下列命題:
①若P,Q是x軸上兩點(diǎn),則d(P,Q)=|x1-x2|;
②已知P(1,3),Q(sin2a,cos2a)(a∈R),則d(P,Q)為定值;
③原點(diǎn)O到直線x-y+1=0上任一點(diǎn)P的直角距離d(O,P)的最小值為
2
2

④設(shè)A(x,y)且x∈Z,y∈Z,若點(diǎn)A是在過P(1,3)與Q(5,7)的直線上,且點(diǎn)A到點(diǎn)P與Q的“直角距離”之和等于8,那么滿足條件的點(diǎn)A只有5個(gè).
其中的真命題是
 
.(寫出所有真命題的序號(hào))

查看答案和解析>>

科目: 來源: 題型:

已知下列命題:
①設(shè)m為直線,α,β為平面,且m⊥β,則“m∥α”是“α⊥β”的充要條件;
②(x3+
1
x
5的展開式中含x3的項(xiàng)的系數(shù)為60;
③設(shè)隨機(jī)變量ξ~N(0,1),若P(ξ≥2)=p,則P(-2<ξ<0)=
1
2
-p;
④若不等式|x+3|+|x-2|≥2m+1恒成立,則m的取值范圍是(-∞,2);
⑤已知奇函數(shù)f(x)滿足f(x+π)=-f(x),且0<x<
π
2
時(shí)f(x)=x,則函數(shù)g(x)=f(x)-sinx在[-2π,2π]上有5個(gè)零點(diǎn).
其中真命題的序號(hào)是
 
(寫出全部真命題的序號(hào)).

查看答案和解析>>

科目: 來源: 題型:

當(dāng)x,y滿足
0≤x≤2
y≥0
y≤x+1
時(shí),則t=x-2y的最小值是
 

查看答案和解析>>

科目: 來源: 題型:

已知α,β是兩個(gè)不同的平面,m,n是兩條不同的直線,給出下列命題:
①若m⊥α,m?β,則α⊥β;
②若m?β,α⊥β,則m⊥α;
③如果m?α,n?α,m,n是異面直線,那么n與α相交;
④若α∩β=m,n∥m,且n?α,n?β,則n∥α且n∥β.
其中正確命題的序號(hào)是
 

查看答案和解析>>

科目: 來源: 題型:

如圖程序框圖,那么輸出S=
 

查看答案和解析>>

科目: 來源: 題型:

△ABC中,sinB既是sinA,sinC的等差中項(xiàng),又是sinA,sinC的等比中項(xiàng),則∠B=
 

查看答案和解析>>

科目: 來源: 題型:

等腰三角形ABC中,AB=AC=4
2
,∠B=45°,P為線段AB中點(diǎn),則
CP
BC
的值為
 

查看答案和解析>>

科目: 來源: 題型:

已知集合M={1,2,3,4,5,6,7,8,9,10,11,12},以下命題正確的序號(hào)是
 

①如果函數(shù)f(x)=x(x-a1)(x-a2)…(x-a7),其中ai∈M(i=1,2,3,…,7),那么f′(0)的最大值為127
②數(shù)列{an}滿足首項(xiàng)a1=2,ak+12-ak2=2,k∈N*,當(dāng)n∈M且n最大時(shí),數(shù)列{an}有2048個(gè).
③數(shù)列{an}(n=1,2,3,…,8)滿足a1=5,a8=7,|ak+1-ak|=2,k∈N*,如果數(shù)列{an}中的每一項(xiàng)都是集合M的元素,則符合這些條件的不同數(shù)列{an}一共有33個(gè).
④已知直線amx+any+ak=0,其中am,an,ak∈M,而且am<an<ak,則一共可以得到不同的直線196條.

查看答案和解析>>

同步練習(xí)冊(cè)答案