相關習題
 0  212529  212537  212543  212547  212553  212555  212559  212565  212567  212573  212579  212583  212585  212589  212595  212597  212603  212607  212609  212613  212615  212619  212621  212623  212624  212625  212627  212628  212629  212631  212633  212637  212639  212643  212645  212649  212655  212657  212663  212667  212669  212673  212679  212685  212687  212693  212697  212699  212705  212709  212715  212723  266669 

科目: 來源: 題型:

對甲、乙兩名籃球運動員分別在100場比賽中的得分情況進行統(tǒng)計,做出甲的得分頻率分布直方圖如圖,列出乙的得分統(tǒng)計表如下:
分值[0,10)[10,20)[20,30)[30,40)
場數(shù)10204030
(Ⅰ)估計甲在一場比賽中得分不低于20分的概率;
(Ⅱ)判斷甲、乙兩名運動員哪個成績更穩(wěn)定;(結論不要求證明)
(Ⅲ)在乙所進行的100場比賽中,按表格中各分值區(qū)間的場數(shù)分布采用分層抽樣法取出10場比賽,再從這10場比賽中隨機選出2場作進一步分析,記這2場比賽中得分不低于30分的場數(shù)為ξ,求ξ的分布列.

查看答案和解析>>

科目: 來源: 題型:

如圖,焦距為2的橢圓E的兩個頂點分別為A和B,且
AB
n
=(
2
,-1)共線.
(Ⅰ)求橢圓E的標準方程;
(Ⅱ)若直線y=kx+m與橢圓E有兩個不同的交點P和Q,O為坐標原點,總使
OP
OQ
<0,求實數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

如圖,在三棱錐P-ABC中,AB⊥AC,PA=PB=PC=3,AB=2
3
,AC=2.
(Ⅰ)求證:平面PBC⊥平面ABC;
(Ⅱ)求二面角A-PB-C的正切值.

查看答案和解析>>

科目: 來源: 題型:

為了解某校學生參加某項測試的情況,從該校學生中隨機抽取了6位同學,這6位同學的成績(分數(shù))如莖葉圖所示.
(1)求這6位同學成績的平均數(shù)和標準差;
(2)從這6位同學中隨機選出兩位同學來分析成績的分布情況,設ξ為這兩位同學中成績低于平均分的人數(shù),求ξ的分布列和期望.

查看答案和解析>>

科目: 來源: 題型:

如圖,△ABC內接于圓O,D為弦BC上一點,過D作直線DP∥AC,交AB于點E,交圓O
在A點處的切線于點P.求證:△PAE∽△BDE.

查看答案和解析>>

科目: 來源: 題型:

運行如圖所示的程序框圖,當輸入實數(shù)x的值為-1時,輸出的函數(shù)值為2;當輸入實數(shù)x的值為3時,輸出的函數(shù)值為7.
(Ⅰ)求實數(shù)a,b的值;并寫出函數(shù)f(x)的解析式;
(Ⅱ)求滿足不等式f(x)>1的x的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知四棱錐P-ABCD中,PB⊥平面ABCD,底面ABCD是直角梯形,∠ABC=∠BCD=90°,PB=BC=CD=
1
2
AB.Q是PC上的一點,且PA∥平面QBD.
(1)確定Q的位置;
(2)求二面角Q-BD-C的平面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=ln(x+1)-x.
(1)求函數(shù)f(x)在x=-
1
2
處的切線方程;
(2)當x1>x2>-1時,求證:f(
x1+x2
2
)>
1
2
[f(x1)+f(x2)];
(3)若k∈R,且xf(x-1)+x2-k(x-1)>0對任意x>1恒成立,求k的最大值.

查看答案和解析>>

科目: 來源: 題型:

設數(shù)列{an}的前n項和為Sn,已知a1=2,3Sn=an+1+(-2)n+2-6,n∈N*
(1)求a2的值;
(2)求數(shù)列{an}的通項公式;
(3)證明:對一切正整數(shù)n,有
1
a1
+
1
a2
+…+
1
an
7
12

查看答案和解析>>

科目: 來源: 題型:

已知x>a>0,求證:x3+13a2x>5ax2+9a3

查看答案和解析>>

同步練習冊答案