相關(guān)習(xí)題
 0  234110  234118  234124  234128  234134  234136  234140  234146  234148  234154  234160  234164  234166  234170  234176  234178  234184  234188  234190  234194  234196  234200  234202  234204  234205  234206  234208  234209  234210  234212  234214  234218  234220  234224  234226  234230  234236  234238  234244  234248  234250  234254  234260  234266  234268  234274  234278  234280  234286  234290  234296  234304  266669 

科目: 來(lái)源: 題型:填空題

11.已知f(x)=x2-4x+5,在區(qū)間[1,m]上的值域?yàn)閇1,2],則m的取值范圍是[2,3].

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

10.計(jì)算  (lg2)2+lg2•lg50+lg25 的值是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

9.給出下列命題:
①函數(shù)y=sin($\frac{5π}{2}$-2x)是偶函數(shù);
②將函數(shù)y=cos2x的圖象向左平移$\frac{π}{3}$單位,得到函數(shù)y=cos(2x+$\frac{π}{3}$)的圖象;
③若函數(shù)y=cos($\frac{x}{3}$+φ),(0<φ<π)的一條對(duì)稱軸方程為x=$\frac{9π}{4}$,則函數(shù)y=sin(2x-φ),(0≤x<π)的單調(diào)遞減區(qū)間為[$\frac{3π}{8}$,$\frac{7π}{8}$];
④已知a=sin(sin2015°),b=sin(cos2015°),則 a<b.
其中正確的命題的序號(hào)是:①④.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

8.函數(shù)y=$\sqrt{tan(2x-\frac{π}{4})-1}$的定義域?yàn)閧x|$\frac{π}{4}$+$\frac{kπ}{2}$≤x<$\frac{3π}{8}$+$\frac{kπ}{2}$,k∈Z}.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

7.函數(shù)y=2cos(2x+$\frac{π}{3}$)+3,x∈[0,$\frac{π}{2}$]的值域?yàn)閇1,4].

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

6.函數(shù)f(x)=sin2ωx+$\sqrt{3}$sinωxcosωx-$\frac{1}{2}$(ω>0)的圖象與直線y=m相切,相鄰切點(diǎn)之間的距離為π,
(1)求m和ω的值,
(2)求函數(shù)的單調(diào)增區(qū)間,
(3)問(wèn):試否存在實(shí)數(shù)n,使得函數(shù)f(x)的圖象與直線$\sqrt{6}$x+y+n=0相切,若能,請(qǐng)求出n的值,若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

5.雙曲線x2-y2=2015的左,右頂點(diǎn)分別為A,B,P為其右支上不同于B的一點(diǎn),且∠APB=2∠PAB,則∠PAB=

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=ax-$\frac{2}{x}$-3lnx,其中a為常數(shù).
(Ⅰ)若函數(shù)f(x)的圖象在點(diǎn)($\frac{2}{3}$,f($\frac{2}{3}$))處的切線與直線x+y-2=0垂直,求函數(shù)f(x)在區(qū)間[$\frac{3}{2}$,3]上的值域;
(Ⅱ)若函數(shù)f(x)在區(qū)間[1,+∞)上單調(diào)遞減,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

3.已知橢圓M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),短軸的一個(gè)頂點(diǎn)與一個(gè)焦點(diǎn)的距離為2,離心率為$\frac{\sqrt{3}}{2}$.
(1)求橢圓M的方程;
(2)過(guò)橢圓M的中心作直線l與橢圓交于P、Q兩點(diǎn),且∠PF2Q=$\frac{2π}{3}$,設(shè)橢圓的左、右焦點(diǎn)分別為F1、F2
①判斷四邊形F1PF2Q的形狀;
②求△PF2Q的面積.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

2.下列命題中:
①α=2kx+$\frac{π}{3}$(k∈Z)是tanα=$\sqrt{3}$的充分不必要條件; 
②已知命題P:?x∈R,lgx=0;
命題Q:?x∈R,2x>0,則P∧Q為真命題; 
③若|$\overrightarrow{a}$|=2|$\overrightarrow$|≠0,函數(shù)f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$|$\overrightarrow{a}$|x2+$\overrightarrow{a}$•$\overrightarrow$x在R上有極值,則向量$\overrightarrow{a}$與$\overrightarrow$的夾角范圍為[$\frac{π}{3}$,π]; 
④在△ABC中,若cos(2B+C)+2sinAsinB<0,則△ABC為鈍角三角形;
 ⑤在△ABC中,若(a2+c2-b2)tanB=$\sqrt{3}$ac,則B=60°.
其中正確命題的序號(hào)為①②④.

查看答案和解析>>

同步練習(xí)冊(cè)答案