相關(guān)習(xí)題
 0  234339  234347  234353  234357  234363  234365  234369  234375  234377  234383  234389  234393  234395  234399  234405  234407  234413  234417  234419  234423  234425  234429  234431  234433  234434  234435  234437  234438  234439  234441  234443  234447  234449  234453  234455  234459  234465  234467  234473  234477  234479  234483  234489  234495  234497  234503  234507  234509  234515  234519  234525  234533  266669 

科目: 來源: 題型:填空題

19.一條光線經(jīng)過點P(2,3)射在直線x+y+1=0上,反射后,經(jīng)過點A(1,1),則光線的入射線和反射線所在的直線方程為2x-y-1=0;4x-5y+1=0.

查看答案和解析>>

科目: 來源: 題型:選擇題

18.已知f(x)滿足f(-x)=-f(x),且當(dāng)x>0時,f(x)=x|x-2|,則當(dāng)x<0時,f(x)的表達(dá)式為( 。
A.f(x)=x|x+2|B.f(x)=x|x-2|C.f(x)=-x|x+2|D.f(x)=-x|x-2|

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知拋物線C:y2=2px(p>0)的焦點F和橢圓E:$\frac{x^2}{8}$+$\frac{y^2}{4}$=1的右焦點重合,
直線l過點F交拋物線于A,B兩點.
(1)若直線l的傾斜角為60°,求|AB|的長;
(2)若直線l交y軸于點M,且$\overrightarrow{MA}$=m$\overrightarrow{AF}$,$\overrightarrow{MB}$=n$\overrightarrow{BF}$,試求m+n的值.

查看答案和解析>>

科目: 來源: 題型:選擇題

16.已知命題p:若x+y≠5,則x≠2或y≠3;命題q:若a<b,則am2<bm2,下列選項中是真命題的為( 。
A.p∧¬qB.¬pC.p∧qD.¬p∨q

查看答案和解析>>

科目: 來源: 題型:填空題

15.對于定義在R上的函數(shù),下列命題:
(1)若f(-2)=f(2),則f(x)為偶函數(shù);
(2)若f(-2)≠f(2),則f(x)不是偶函數(shù);
(3)若f(-2)=f(2),則f(x)一定不是奇函數(shù).
其中正確的命題是②(把所有正確命題的序號都填上).

查看答案和解析>>

科目: 來源: 題型:填空題

14.已知f(x)=$\left\{\begin{array}{l}{x-3(x≥9)}\\{f[f(x+4)](x<9)}\end{array}\right.$,則f(8)=6.

查看答案和解析>>

科目: 來源: 題型:填空題

13.函數(shù)f(x)=x2+ax-1,若對于x∈[a,a+1]恒有f(x)<0,則a的取值范圍$-\frac{{\sqrt{2}}}{2}<a<0$.

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知正項數(shù)列{an}的前n項和為Sn,且滿足a1=2,anan+1=2(Sn+1)(n∈N*).
(1)求a2017的值;
(2)求數(shù)列{an}的通項公式;
(3)若數(shù)列{bn}滿足b1=1,bn=$\frac{1}{{{a_n}\sqrt{{a_{n-1}}}+{a_{n-1}}\sqrt{a_n}}}$(n≥2,n∈N*),求{bn}的前n項和Tn

查看答案和解析>>

科目: 來源: 題型:解答題

11.如圖,在平面直角坐標(biāo)系中,己知點O(0,0),A(5,0),B(4,4).
(1)求過O、B、A三點的拋物線的解析式.
(2)在第一象限的拋物線上存在點M,使以O(shè)、A、B、M為頂點的四邊形面積最大,求點M的坐標(biāo).

查看答案和解析>>

科目: 來源: 題型:解答題

10.如圖,一次函數(shù)y=ax+b的圖象與反比例函數(shù)y=$\frac{k}{x}$的圖象交于A、B兩點,與x軸交于點C,與y軸交于點D,已知OA=$\sqrt{10}$,點B的坐標(biāo)為(m,-2),tan∠AOC=$\frac{1}{3}$.
(1)求反比例函數(shù)、一次函數(shù)的解析式;
(2)求三角形ABO的面積;
(3)在y軸上存在一點P,使△PDC與△CDO相似,求P點的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案